Abstract
Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.
Links
BibTeX (Download)
@article{Yan2021SoftMagnetic, title = {Soft Magnetic Skin for Super-Resolution Tactile Sensing with Force Self-Decoupling}, author = {Youcan Yan and Zhe Hu and Zhengbao Yang and Wenzhen Yuan and Chaoyang Song and Jia Pan and Yajing Shen}, doi = {10.1126/scirobotics.abc8801}, year = {2021}, date = {2021-02-24}, urldate = {2021-02-24}, journal = {Science Robotics}, volume = {6}, number = {51}, pages = {eabc8801}, abstract = {Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.}, keywords = {Co-Author, JCR Q1, Sci. Robot.}, pubstate = {published}, tppubtype = {article} }