
Vision-based, Low-cost, Soft Robotic Tongs for
Shareable and Reproducible Tactile Learning

Tianyu Wu1,2#, Yujian Dong1,2#, Yang Xiao1, Jinqi Wei1, Fang Wan1,3,∗, Chaoyang Song2,4,∗

Abstract— Recent research shows a growing interest in
adopting touch interaction for robot learning, yet it remains
challenging to efficiently acquire high-quality, structured tactile
data at a low cost. In this study, we propose the design of vision-
based soft robotic tongs to generate reproducible and shareable
data of tactile interaction for learning. We further developed
a web-based platform for convenient data collection and a
portable assembly that can be deployed within minutes. We
trained a simple network to infer the 6D force and torque using
relative pose data from markers on the fingers and reached a
reasonably high accuracy (an MAE of 0.548N at 60Hz within
[0, 20]N ) but cost only 50 USD per set. The recorded tactile data
is downloadable for robot learning. We further demonstrated
the system for interacting with robotic arms in manipulation
learning and remote control. We have open-sourced the system
on GitHub with further information. (https://github.
com/bionicdl-sustech/SoftRoboticTongs)

I. INTRODUCTION

Collecting high-quality tactile data at the robot’s fingertips
complements learning dexterous interaction with the physical
world. It is widely accepted that tactile perception offers
complementary information about the physical properties
of the objects and environment, which is not affected by
occlusion or lighting, offering a reduced uncertainty in local-
ized perception. Research literature has demonstrated various
designs of tactile sensors. However, making it reproducible
and shareable at a low cost remains challenging for an
efficient collection of reasonably accurate, structured touch
interaction data for learning.

A. Tactile Intelligence from Nature to Robotics

Skin is the largest organ of vertebrates, with a layer
of usually soft tissue separating the internal organs from
the physical environment, providing protection, regulation,
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Fig. 1. The vision-based, low-cost, soft robotic tongs for shareable and
reproducible tactile learning. (a) all components in a foldable fanny pack;
(b) the assembled system on a tabletop connected to a laptop through USB;
(c) the test rig for calibrating the 3D meta-finger’s tactile performance; and
(d) the working principle when integrated with the tongs.

and sensation as its main functions [1]. Tactile interaction
between the skin and the object-centric environment has been
well-recognized to provide perception for dexterous manip-
ulation [2]. Recent research in robotic manipulation learning
shows a growing trend in the adoption of touch-based tactile
intelligence when dealing with challenging tasks, including
the robotic Jenga player [3], magnetic skin with decoupled,
super-resolution [4], as well as recent publication on the
robotic flesh [5].

B. Tactile Sensorization of Force and Torque

The sensorization of tactile interaction is usually encoded
as force and torque. A simple implementation is to fix a
pressure or pneumatic sensor at the tip of the limb to detect
binary contact*. One can replace it with a more advanced
sensor to detect point-wise force and torque in 6D [6]. To
detect tactile interaction in a distributed manner, an array of
sensing units can be integrated to detect normal pressure over
the contact surface [7]. Recent development shows growing
adoption of optical [8], [9], [10], vision [11], [12], [13], and
magnetic [4] modalities for more advanced tactile detection.

C. Soft Robotic Advantage for Learning Touch

The growing interest in soft robotics enables researchers
to develop learning-based solutions to enable natural inter-
actions with humans or the environment, showing closer
resemblance to the skin. Interfaces with a soft design are
usually challenging to model, especially when taking a
complex physical form, but capable of providing feature-rich

*https://www.unitree.com/products/aliengo/
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deformations for vision-based sensors [11]. Recent research
uses magnetic sensors and machine learning techniques to
show a high-performing design that detects decoupled tactile
interaction between normal and tangential forces with super-
resolution [4].

On the other hand, mechanoreceptive designs with soft
structures also show promising performance in capturing tac-
tile interaction. For example, the VESA actuator design uses
optical sensors to detect external forces on the pneumatic soft
actuator body to enable proprioceptive sensing [14]. Using
3D meta-materials with a soft design, similar optical sensors
can be integrated either inside the soft structure [8] or on
the contact surface [13] to provide rich, real-time data of
physical interaction for learning-based object classification
or contact prediction[15].

D. Towards Shareable and Reproducible Force Learning

The robot design paradigm is also experiencing changes
to integrate sensing, planning, and actuation in one unit to
address the shifting demand for learning, where force-related
modalities become critically important instead of accuracy
and speed. For example, the soft tactile finger design takes
a different approach where the robot body provides sensory
feedback while being capable of object grasping as a finger
besides being part of the finger as a tip [13]. The recent
design of the insight finger takes a rigid design comparable
to a human thumb to provide high-performing tactile sensing
while being capable of direct implementation as a robotic
finger [16]. There is a growing trend in the robot learning
community to include force-related modalities in learning-
based robot control, such as Berkley’s Blue Arm Project
[17]. However, there remains a challenge in shareability and
reproducibility at a low cost to implement tactile-based force
learning in robotic manipulations.

E. Paper Summary and List of Contributions

In this study, we propose the design of soft robotic tongs
fixed with a pair of 3D meta-fingers capable of generating
omni-directional passive adaptation during physical interac-
tions, as shown in Fig. 1, where vision-based pose tracking is
used for collecting tactile data during object manipulation.
The performance of the proposed design is verified using
a multi-layer perceptron to benchmark its performance and
validated in a series of object manipulation learning tasks.
The contributions of this study are listed below.

• Proposed a shareable and reproducible design of the soft
robotic tongs for collecting comprehensive tactile data
in 6D with a web-based user interface;

• Validated the performance of the soft robotic tongs
with a low cost that is at least 100X cheaper than
commercial FT sensors, yet flexible for various manual
demonstrations or gripper integration.

• Conducted a pilot study using this proposed design for
teaching robot learning with positive student feedback.

II. METHOD

A. Shareable and Reproducible Design of Soft Robotic Tongs

Shareability and reproducibility are the priority of design
considerations while developing the tactile data collection
system at a low cost for robot learning. The overall hardware
design is mainly mechanical, with a single monocular camera
(720p/ϕ2.8mm/60Hz) as the sensing unit. Besides directly
interacting with objects by hand, humans are also skilled at
operating tools to manipulate objects. To make the system
comparable with the standard parallel two-finger grippers
used in the industry, we leveraged the existing design of regu-
lar kitchen tongs to systematically reduce the dimensionality
of multi-fingered hand motion into two-fingered tongs. We
used a soft, 3D meta-finger structure as the physical interface
for interacting with the objects, which can be conveniently
fixed at the tip of the tongs or the gripper. As shown in
Fig. 2, the soft structure takes a unique design as a meta-
material capable of generating passive geometric adaptation
to object contact in any direction. This way, we can ensure a
transferable interaction between the tongs or the gripper and
the objects. The soft meta-finger passively deforms to the
object geometry, enhancing its object grasping performance
while providing a visible distortion that a camera can capture.

Fig. 2. Integration of the 3D meta-fingers as soft robotic tongs. (a) &
(e) Example usages manually operated by humans as tongs or attached to
grippers as fingers; (b) the soft robotic tongs with the left and right sides
in assembled and exploded views; (c) demonstration of the meta-fingers’
deformation and marker movements; and (d) the simplified model captured
by the markers.

Previous work shows a promising performance of using
vision-based tactile learning with this soft meta-finger by
fixing a camera inside at the base, capable of inferring force
and torque in 6D comparable to commercial F/T sensors
[13]. In this study, we simplified the design by attaching two
ArUco markers at the back of the finger surface for 6D pose
tracking using a monocular camera. During physical contact,
the 3D deformation of the meta-finger’s front surface is
translated to the backside, causing the relative pose between
these two markers to change in 3D. By visually tracking such
changes, we alleviate the need for hand-eye calibration to
streamline data collection. We use this relative pose change
to infer the 6D force and torque between the soft meta-finger
and the objects for collecting the tactile interaction data. This
process can be achieved with the fingers attached to the tongs
or the gripper.



Fig. 3. User interface for vision-based tactile data collection. (a) The web-based user interface for collecting vision-based tactile data; (b) The pipeline
of the web-based data collection software.

We further optimized the design to make it portable for
storage as parts, which can be folded as a fanny pack, as
shown in Fig. 1(a). One can set up the system within minutes
by following simple instructions. A mouse pad with marks is
also provided to help users place the camera stand quickly,
and additional ArUco markers are printed on the pad for
quick calibration of the scene plane. The next step is to
connect the camera USB to a laptop for data collection in a
browser.

B. A Web-based User Interface for Tactile Data Collection

While it is possible to train a machine learning model
to infer force and torque from the meta-finger’s structural
deformation [13], in this study, we prefer to use fiducial
markers instead for simplified and direct data processing.
The highly distinguishable patterns of the fiducial markers
are coded with geometric features for 6D pose and ID labels
that can be readily extracted using existing APIs. To enhance
reproducibility and shareability, we developed a web-based
user interface for tactile data collection, which any user with
a working laptop can access.

The user interface, illustrated in Fig. 3(a), consisting of a
navigation bar on the left and four data screens stacked on the
right for camera view, visualization screen, data recording,
and control panel. The concept of this user interface is shown
in Fig. 3(b). When markers are presented within the camera’s
view range, the users can define the labels of each marker in
the control panel to assign physical meanings to each marker.
For example, one can stick a marker plate to a YCB object
and assign it using the control panel, which can be shown on
the visualization screen with the object’s model. When the
physical object moves, the 3D model on the visualization
screen moves accordingly, displaying its motion data on the
data recording screen.

On the other hand, in this study, one can assign multiple

markers to represent complex physical meanings, such as the
soft meta-finger’s distortion represented using two markers’
relative poses. Accordingly, we prepared a simplified open
chain representing the tongs’ motion on the visualization
and data recording screens. The data is recorded at 60Hz
in a time-series format. One can export the recorded pose
tracking data labeled with predefined physical meanings for
convenient processing in robot learning. The data is recorded
locally in the browser but not in the server.

C. Visual Tracking of Tactile Interaction at a Low-cost

Tactile sensor development usually focuses on leveraging
a layer of soft material for physical interaction while using
magnetic, visual, or electrical modalities for detecting tactile
data, as shown in Fig. 4(a). However, further integration
of these sensors into robotic systems remains a challenge.
This study uses the soft, 3D meta-finger design with two
extra marker plates fixed at the backside. These fingers can
be rapidly prototyped using 3D printing, including the soft
structure, the detachable plates for ArUco markers, and the
base mount connecting the finger to the tongs. One can
quickly redesign the base mount to fix the finger to different
grippers to introduce passive adaptive compliance in omni-
directions. The basic dimensions of the design are shown in
Fig. 4(b).

The overall idea is to use the relative pose visually tracked
by the markers on the soft meta-finger’s backside to infer the
6D force and torque during tactile contact against baseline
data collected from a high-performing F/T sensor at the
finger’s base, As shown in Fig. 4(c). A simple cube adaptor
mounts the soft meta-finger on top of an F/T sensor (Nano 25
from ATI). The test rig can provide the loading flange with
linear motions along the horizontal and vertical axes and
rotary motion about the vertical axis. We adjust the camera
viewing angle to face the soft meta-finger fixed on the test rig



and use the web-based user interface to collect the relative
pose of the two markers fixed at the finger’s backside. Each
time the push rod was fixed at different heights, the meta-
finger was moved linearly toward the rod and rotated 10 or 20
degrees to mimic the real situations while grasping. The ATI
sensor’s force and torque readings were recorded as training
labels. While the spatial distortion of the soft meta-finger at
different contact states may not be perfectly mapped to the
6D force and torque readings at the finger’s base, we intend
to build a simple neural network for testing as a low-cost
experiment.

Fig. 4. The 3D meta-finger design with two Aruco markers fixed
at the back for vision-based tactile sensing at a low cost. (a) Tactile
sensors with different working principles such as magnetic field [4], vision
[11], piezoelectric [18] and optical flow [19]; (b) Design of the 3D meta-
finger; and (c) The front view of the test rig probing the 3D meta-finger in
twisting motion is an example, and the top view is when the finger base
rotates at 0 and 20 degrees.

III. EXPERIMENT RESULTS

A. Visual-Tracking Soft Fingers to Learn Tactile Interaction

We built a simple network of multi-layer perceptrons with
three hidden layers of 1000, 100, and 50 neurons each, as
shown in Fig. 5(a). The network input is the relative pose of
the two ArUco markers with the bottom marker as the base
reference, expressed in 6D as (x, y, z, roll, pitch, yaw) and
recorded as a time-series format at 60Hz. Compared with a
direct reading of the absolute marker pose, the relative poses
alleviate the need for external calibration. The output is the
6D force and torque estimated at the base of the soft meta-
finger, also expressed in 6D as (Fx, Fy, Fz,Mx,My,Mz),
which is labeled using the ATI’s reading recorded at 60Hz.
We recorded a total size of 23,500 samples containing
various finger deformations collected automatically. We ran-
domly picked 22,000 samples as the training dataset, with
the rest as the test dataset.

Fig. 5(b) shows the model performance in each dimension.
Due to the experimental setup, Fx is within [-2,2] N, and Fy

is within [0,20] N, along the direction of the tong’s opening
and closure. The MAE (mean absolute error) of Fx is 0.197
N , which is relatively large compared to its small force
range. The prediction of Fy and Fz performs better with
MAE of 0.548 and 0.342, respectively. The reason could
be that Fx is related to the deformation characterized by

Fig. 5. The tactile perception using the MLP. (a) The architecture of
the MLP model; (b) Results of the force-torque measurement on the 1500
testing samples. The black dashed line plots where the measurement meets
the ground truth.

the relative shift between the two Aruco markers along the
Z axis of the camera. The marker detection has a lower
accuracy in the depth direction. This also explains the worst
performance in My with an MAE of 0.020 N · m. From
these results, mechanical information can be inferred from
visually captured large deformations, replacing the need for
more expensive F/T sensors.

B. Remote Manipulation with Soft Fingers

An essential problem in human-robot interaction is letting
the robot follow human commands more intuitively and
responsively. We demonstrated remote visual servoing of a
UR10e robotic arm using the movements of human hand-
held tongs in a structured way. The opening and closure of
the HandE gripper matched the distance between the two soft
fingers. In Fig. 6(a), the building cubes are transported by
remote operators and stacked into a pyramid. As shown in
Fig. 6(b), by controlling the opening width of the tongs, the
operator completed the transport of the foam cylinders while
keeping their original shape. In Fig. 6(c), the cylindrical foam
was transported on a flat plate held by the robotic arm, and
the foam did not roll and fall, which verifies the stability of
the remote servoing. In Fig. 6(d), the robot arm successfully
inserted a USB stick into a motherboard by remote control,
reflecting the suitability for delicate tasks. The control is



Fig. 6. Results of remote manipulation control using the soft robotic tongs, including (a) stacking YCB cubes; (b) transferring soft foam cylinders
without damaging them; (c) balancing objects on a plate without falling, and (d) the assembly task is to insert a USB stick into an Nvidia Jetson Nano
board.

intuitive to the human operator and does not require users
to have a professional knowledge background. Users can un-
derstand the operation method after simple teaching, which
reduces the difficulty of sharing and reproducing the learning
results of the robot.

C. Applying the Collected Data for Gaussian Learning
Based on the data acquisition platform and the user

interface of the web page, we selected an ArUco Code
on the gripper as the pen tip on the web page, wrote
letters on the data acquisition platform, and recorded the
operator’s entire movement information, including The 6D
pose and the corresponding timestamp are formatted and
saved. We then performed imitation learning using Gaussian
mixture regression (GMR). Gaussian Mixture Regression
(GMR) utilizes the Gaussian Condition Theorem to estimate
the output distribution given input data. The first is the
Gaussian Mixture Model (GMM) estimation, which encodes
the joint distribution of input and output data points and
then predicts the output given the observed input through
a linear combination of conditional expectations. Therefore,
GMR does not fit the region function but relies on the learned
joint distribution.

Fig. 7. Gaussian learning using data collected by the proposed tools.

In the experiment, we collected four sets of data and
wrote four letters of ROLC (Robotics for Online Learning
and Control) respectively. Each letter data set contains five
sets of trajectory data and then extracts the x and y position
information in the data as input. Refer to The method raised
by Noemie Jaquier et al. [20]. uses the method of sampling at
equal time intervals to complete the imitation learning based
on GMR, and the output results are shown in Fig. 7.

D. Bi-manual Manipulation Demonstration with UR10e

In this experiment, we want to realize the cooperation
between the human and the robotic arm to complete the
task of double-arm operation. We symmetrically map the
pose information of the tongs to the robot motion coordinate
system, as shown in the sequence of Fig. 8. The robotic
arm will take the central line as the central axis, and the
movement of the tongs is symmetrically reproduced, thereby
realizing the tasks of carrying the bag with two arms and
opening, closing, and rotating the bag, which has an excellent
prospect for the development of human-machine cooperation.

Fig. 8. Demonstration of mirrored remote control where the soft
robotic tongs collaborate with the robotic arm to perform a bi-manual
bag handling task.

IV. DISCUSSIONS AND CONCLUSION

A. Towards Shareable and Reproducible Tactile Learning

In this study, shareability and reproducibility are the
primary design considerations while developing soft robotic
tongs for tactile learning. The overall system takes a series
of simplification during the design process: (1) we use the
tongs as a tool with significantly reduced dimensionality for
object manipulation, which is also transferable to robotic
grippers; (2) we adopt the soft, meta-finger capable of omni-
directional adaption to further reduce the uncertainties during
physical contact with environmental objects, but functionally
useful for both manual and robotic integration; (3) we further
reduced the sensing burden by using only one monocular
camera detecting common fiducial markers attached to the
fingers, tongs, and objects for a structured representation of



the object manipulation task environment; (4) the overall
design further considers shareability and reproducibility by
developing a portable bag at a low cost, which comes
with a web-based browser interface that is easily accessible
disregard of the operating system; (5) as shown in the
demonstration, one can further develop APIs to remotely
interact with robotic hardware in various ways for conducting
learning-based research. The tactile model performs well
along the direction of grasping with an MAE of 0.548N
at a range of [0, 20]N .

B. Pilot Program for Teaching Robot Learning

We also conducted a pilot program using the proposed
system to teach a robot learning course at the University
level during Spring 2022, as shown in Fig. 9. While the lab
session of this course was previously conducted on-site, the
teaching team prepared the proposed design so that it could
be fabricated at a low cost, accessed with ease of engineering,
and provide relatively rich data so that students can use it
for their training models. Although students returned to the
campus during the second half of the semester, we kept using
this proposed design for teaching purposes. We integrated
four experiment sessions for students to practice collecting
tactile data for robot learning.

Fig. 9. Pilot program implementation for teaching robot learning,
including (a) four lab projects online and (b) pilot testing with students.

V. LIMITATIONS AND FUTURE WORK

While the resultant design shows interesting tactile inter-
actions for robot learning, this study also has limitations.
The system needs to be improved in its functionality and
comprehensiveness to provide a rich data set for training,
which requires further development. Although the presented
system generally works, the ArUco pose estimation with
the browser can only reach the level of many state-of-the-
art pose estimations with filtering. Furthermore, the delays
in communication limited the range and experience when
conducting remote control.

In the future, we will focus on optimization in design
and algorithm development with user interface improvement
for tactile and movement data collection in human-robot
interactions, including advanced techniques for better ac-
curacy in determining the portable tong’s 6D pose in real-
time, improving our robotic learning processes and system
capabilities. Further integration as a teaching tool is also a

direction that we are working on, with updated information
posted online for shareable and reproducible research†.
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