
Describing Robots from Design to Learning:
Towards an Interactive Lifecycle Representation of Robots

Nuofan Qiu1, Fang Wan2,∗, and Chaoyang Song3,∗

Abstract— The robot development process is divided into
several stages, which create barriers to the exchange of in-
formation between these different stages. We advocate for
an interactive lifecycle representation, extending from robot
morphology design to learning, and introduce the role of
robot description formats in facilitating information transfer
throughout this pipeline. We analyzed the relationship between
design and simulation, enabling us to employ robot process
automation methods for transferring information from the
design phase to the learning phase in simulation. As part of
this effort, we have developed an open-source plugin called
ACDC4Robot for Fusion 360, which automates this process
and transforms CAD software into a user-friendly graphical
interface for creating and editing robot description formats
to solve the Design2Sim problem. Additionally, we offer an
out-of-the-box robot model library to streamline and reduce
repetitive tasks. All codes are hosted open-source. (https:
//github.com/bionicdl-sustech/ACDC4Robot)

I. INTRODUCTION

Robot development, as a systematical process, encom-
passes several distinct phases, commencing with the design
of the robot’s morphology. The information about robot
morphology design plays a pivotal role throughout the devel-
opment lifecycle, particularly in facilitating learning through
simulation. A robot’s morphology critically influences its
configuration space, which in turn determines the robot’s
functional capabilities [1]. This morphology is primarily
established during the design phase. The advancement in
computer-aided design (CAD) technologies has been instru-
mental in streamlining the design process and enhancing
interactivity through modern graphical user interfaces (GUI).

In addition to the consideration of robot morphology, the
aspect of learning has emerged as a crucial focus in robotics.
This is attributed to its role in enabling robots to perform
complex tasks, enhancing their interaction with the envi-
ronment. However, training robots directly in hardware can
result in failures or damage, which can be costly and time-
consuming. In contrast, simulation offers a more economical

This work was partly supported by the Ministry of Education of China-
Autodesk Joint Project on Engineering Education, the National Natu-
ral Science Foundation of China [62206119, 52335003], and the Sci-
ence, Technology, and Innovation Commission of Shenzhen Municipality
[JCYJ20220818100417038, ZDSYS20220527171403009]. Corresponding
Emails: wanf@sustech.edu.cn (F.W.), songcy@ieee.org (C.S.).

1Nuofan Qiu is with the School of Design, Southern University of Science
and Technology, Shenzhen 518055, China

2Fang Wan is with Shenzhen Key Laboratory of Intelligent Robotics and
Flexible Manufacturing, Southern University of Science and Technology,
Shenzhen, Guangdong 518055, China.

3Chaoyang Song is with the Department of Mechanical and Energy
Engineering, Southern University of Science and Technology, Shenzhen
518055, China.

Fig. 1. Robot Development Process and Research Problems between
them. The development process of robotic systems can be segmented into
multiple distinct phases. Discrepancies and transitional challenges between
these phases often result in significant issues in the overall development
of robots. Consequently, this has led to the emergence of specific re-
search areas, including ’Design-to-Simulation’ (Design2Sim), ’Simulation-
to-Reality’ (Sim2Real), and Human-Robot Interaction (HRI).

and safer approach to robot development. Moreover, robot
simulators incorporate domain randomization techniques that
increase the exploration of the state-action space, facilitating
the transfer of knowledge learned in simulation to real robots
[2]. Consequently, most contemporary learning methodolo-
gies incorporate simulation to expedite the learning process.

For effective simulation of a robot system, comprehensive
models of both the robot and its operating environment are
indispensable. These models are typically delineated using
the Robot Description Format (RDF). RDF represents a
category of formats designed to structurally depict robot
systems, adhering to a predefined set of rules. It encapsulates
critical details of the robot system, encompassing aspects
such as kinematics, dynamics, actuators, and sensors. More-
over, it extends to incorporate environmental information,
which is vital for the robot’s interactive capabilities. Given
the comprehensive nature of the data encompassed by RDF,
it is a pivotal interface that bridges the gap between robot
morphology design and facilitating robot learning within
simulations. However, the robot description formats are
tedious to generate for simulation [3].

A. File Formats from Design to Learning

In a simulation environment, several file formats are used
in robot morphology design and learning. These file formats
have specific features tailored to different application scenar-
ios, hindering process interoperability. Various file formats
make it challenging to transfer information from the design
phase to the learning process in simulation.

https://github.com/bionicdl-sustech/ACDC4Robot
https://github.com/bionicdl-sustech/ACDC4Robot
mailto:wanf@sustech.edu.cn
mailto:songcy@ieee.org


In contemporary practice, robot morphology is typically
designed using CAD software. File formats in the CAD
field can be categorized into neutral and native formats.
Neutral file formats adhere to cross-platform compatibility
standards, including STEP files (.stp, .step), IGES files (.igs,
.ige), COLLADA, and STL. Native file formats are platform-
specific and contain precise information optimized for the
respective platform, examples of which include SolidWorks
(.sldprt, .sldasm), Fusion 360 (.f3d), Blender (.blend), and
many others.

Several robot description formats are used in robot sim-
ulation. The most common format is the Unified Robotics
Description Format (URDF), which is supported by various
robot simulators, including PyBullet, Gazebo, and MuJoCo.
SDFormat is natively supported by Gazebo and partially
supported by PyBullet. MuJoCo natively supports MJCF and
is also supported by Isaac Sim and PyBullet. Other robot
description formats resemble native formats specific to par-
ticular simulators than URDF. For example, the CoppeliaSim
file is designed for use with CoppeliaSim, and WBT is used
in Webots.

B. A Brief Historical Review of Robot Description Formats

Robot Description Formats provide information for mod-
eling the robot system and are used in robot simulators
as input. Currently, research resources on robot description
formats are limited, with most of the relevant information
available only on their respective websites and forums,
making research challenging. The authors in [4] compared
existing formats and summarized their main advantages and
limitations. Here, we offer a concise historical perspective
on robot description formats to enhance understanding.

1) Before Unified Robot Description Format (URDF):
Research on robot modeling predates the concept of a robot
description format by a considerable margin. Denavit and
Hartenberg formulated a convention using four parameters to
model robot manipulators in 1955 [5], which is still widely
used in robotics. With the advent of computer simulation,
robots can be defined using programming languages with
variables [6]. While it is theoretically possible to describe a
robotic system through a programming language’s variables
and data structures, relying on programming language fea-
tures can make exchanging robot system information across
different platforms cumbersome for various purposes. There-
fore, representing robot system information in a unified,
programming language-independent manner will facilitate
interchangeability across different platforms and enhance
development efficiency. Park et al. [7] discussed XML-
based formats, which can describe robots due to XML’s
convenience in delivering information.

2) URDF, SDFormat, and Others: While developing a
personal robotics platform, the idea of creating a ”Linux
for robotics” came to the minds of Eric Berger and Keenan
Wyrobek [8]. With the first distribution of ROS released
in 2009, URDF was simultaneously introduced. URDF is
an XML-based file format that enhances readability and

describes robot links’ information, including kinematics, dy-
namics, geometries, and robot joints’ information organized
in a tree structure. URDF universally models robots, making
them suitable for visualization, simulation, and planning
within the ROS framework.

With the growing popularity of ROS, URDF has become
a widely used robot description format supported by vari-
ous simulation platforms, such as PyBullet, MuJoCo, and
Isaac Sim, among others. However, an increasing number
of roboticists have recognized the limitations and issues of
URDF, such as its inability to support closed-loop chains.
To address these concerns, the community has endorsed pro-
posals like URDF21. The problems stemming from URDF’s
design may become increasingly challenging to resolve over
time due to the diminishing activity in its development
(the repository’s2 update frequency has become very low).
Therefore, new formats can draw upon URDF’s experience
to avoid such issues from the outset and expand their ability
to describe a broader range of scenarios.

Rosen Diankov et al. [9] promoted an XML-based open
standard called COLLADA, which allows for complex kine-
matics with closed-loop chains. SDFormat (Simulation De-
scription Format) was initially developed as part of the
Gazebo simulator and separated from Gazebo as an indepen-
dent project to enhance versatility across different platforms.
SDFormat is also an XML-based format that shares a similar
grammar with URDF but extends its ability to describe the
environment with which the robot interacts. Furthermore,
SDFormat is actively developing, making it more responsive
to future robotics needs. MJCF is another XML-based file
format initially used in the MuJoCo simulator. It can describe
robot structures, including kinematics, dynamics, and other
elements like sensors and motors.

Although these robot description formats enable more
comprehensive modeling information for robotic systems
and have resolved some of the limitations of URDF, URDF
remains the most universally adopted robot description for-
mat in academia and industry. Fig. 2 provides a timeline
representation of the release times of these robot description
formats.

Fig. 2. Robot Description Format History: Timeline of the release times
for each robot description format.

3) Beyond URDF: Daniella Tola et al. [10], [11] sur-
veyed the user experience of URDF within the robotics
community, including academia and industry. Their survey

1https://sachinchitta.github.io/urdf2/
2https://github.com/ros/urdf



TABLE I
COMPARING CAD TO RDF TOOLS.

Tool CAD software Output RDF
sw urdf exporter SolidWorks URDF
RobotDescriptor FreeCAD SDF

OnShape to Robot OnShape URDF, SDF
Phobos Blender URDF, SDF, SMURF

Robot Editor Blender SDF
fusion2urdf Fusion 360 URDF

ACDC4Robot Fusion 360 URDF, SDF, MJCF

revealed problems associated with using URDF and inspired
the research of robot description formats. Some challenges
are specific to URDF, for instance, the lack of support for
a closed-chain mechanism. Additionally, some challenges
are common to other robot description formats, such as the
complex workflow involving multiple tools, including CAD
software, text editors, and simulators.

One of the solutions is to create a new robot description
format that can adequately describe robot systems and is also
easy to use. A new attempt in this regard is the OpenUSD
format3, which combines the strengths of academia and
industry to drive progress in this field.

Another solution is to provide more tools to enhance the
usability of robot description formats. Some tools, such as
gz-usd4 and sdformat mjcf5, improve the interoper-
ability of different robot description formats. Software tools
such as “Nuts-and-Bolts” [3] will make the simulation more
useful in robotics. In table I, we list several tools that can be
used for exporting robot designs to robot description formats.

In the rest of this paper, Section II introduces methods
for structuring the workflow from design to learning and
presents an automation tool, ACDC4Robot, designed to ad-
dress these challenges. Section III demonstrates the usage of
ACDC4Robot with examples and offers a robot model library
for users that can be readily utilized. We conclude in Section
IV and discuss the limitations of our work and the future of
the format for robot system development. This article’s con-
tributions include promoting a lifecycle representation from
robot design to robot learning, offering the ACDC4Robot
tool within Fusion 360 to streamline the workflow from robot
design to robot learning, and constructing an out-of-the-box
robot model library for robot design and learning.

II. METHODOLOGY

We analyze the workflow to describe robots from design to
learning, then describe an interactive lifecycle representation.
Next, we employ robot process automation to streamline the
processes of robot design to robot learning. An automation
tool integrated with a CAD platform can achieve this lifecy-
cle representation interactively.

A. An Interactive Lifecycle Representation

Information about robot morphology design is crucial for
subsequent phases in the robot development process, partic-

3https://aousd.org/
4https://github.com/gazebosim/gz-mujoco/tree/main/sdformat mjcf
5https://github.com/gazebosim/gz-usd

ularly for simulation. RDF serves as an effective medium
to bridge the gap between CAD systems and simulators.
However, manual creation or modification of RDFs is often
tedious, time-consuming, and error-prone. Modern CAD
software, equipped with Graphical User Interfaces (GUI),
alleviates this by rendering the design process more in-
teractive. Leveraging CAD as an editor for RDF allows
for a “What You See Is What You Get” (WYSIWYG)
approach, facilitating intuitive interactions with the robot
description format. Consequently, this integration transforms
the robot model into an interactive representation throughout
the development lifecycle.

B. Robotic Process Automation from Design to Simulation

CAD software and robot simulators are two systems with
distinct functions, each emphasizing different aspects of the
robot. However, some features in CAD and robot simulators
represent different forms of the same information. The way
components are joined to construct a robot assembly in CAD
software determines the kinematics of the robot. The physical
properties of robot components in CAD software can also
pertain to the dynamics in the robot simulator. The geomet-
ric shape of components can be utilized for visualization
and collision information in the simulator. Fig. 3 shows
that a one-to-one relationship between CAD and simulation
systems enables the realization of automated conversions
between these two processes, which was previously feasible.

Fig. 3. Robot Process Automation from Design to Simulation. A one-
to-one relationship exists between CAD software and robot simulators in
the following features: (i) assembly structure and kinematics; (ii) physical
properties and dynamics; (iii) geometry topology, visualization, and colli-
sion.

C. An Open-source Plug-in Using Fusion 360

Software tools can be useful to remove the barriers for
using simulation in robotics, thus, we present an open-source
plugin using Fusion 360 to achieve the interactive lifecycle



process automation from robot design to robot learning. Fu-
sion 360 is a popular CAD software developed by Autodesk
within the roboticist community. It provides API access for
developers, allowing it to accomplish automation tasks.

Following J. Collins et al.’s work [12], we selected a set
of popular simulators used in robotics learning, including
RaiSim, Gazebo, Nvidia Isaac, MuJoCo, PyBullet, CARLA,
Webots, and CoppeliaSim for comparing the compatibility
of robot description formats: URDF, SDFormat, MJCF, and
USD. Since we have opted to utilize Gazebo, PyBullet, and
MuJoCo as our target simulation platforms, we have decided
to use URDF, SDFormat, and MJCF according to Table II
as the robot description formats for transforming the design
into the learning process.

TABLE II
COMPARING SIMULATOR SUPPORT LEVELS WITH DIFFERENT ROBOT

DESCRIPTION FORMATS.

Robot
Description

Format
Year Supported Simulators

URDF 2009 Gazebo, Nvidia Isaac,
MuJoCo, PyBullet, CoppeliaSim

SDFormat 2012 Gazebo, PyBullet
USD 2016 Nvidia Isaac

MJCF 2021 RaiSim, Nvidia Isaac,
MuJoCo, PyBullet

III. RESULTS

In this section, we will introduce the GUI of the Fusion
360 plugin that enables the interactive lifecycle process
from robot design to robot simulation, along with a guide
on how to use the plugin. And demonstrate the ability of
ACDC4Robot by examples. Additionally, we will show a
robot library containing various out-of-the-box robot models
to help users reduce the time spent on repetitive tasks.

A. The ACDC4Robot Plug-in with Fusion 360

ACDC4Robot is an open-source plugin for Fusion 360 that
can automatically convert design information into a simula-
tion data structure (robot description format) for learning.
The pipeline for using the ACDC4Robot plugin from design
to learning is illustrated in Fig. 4. Users can import an
existing robot model into Fusion 360 or design a robot from
scratch using Fusion 360.

ACDC4Robot provides a straightforward GUI to simplify
the conversion process, as shown in Fig. 5. After completing
the robot morphology design, click the start button of the
ACDC4Robot plugin, and a settings panel will appear on
the right side of Fusion 360. This panel allows the choice
between URDF, SDFormat, or MJCF as the format for trans-
ferring design information to the simulation and selecting the
target simulator for exporting in a format compatible with the
chosen simulator. The exported files can then be used in the
simulation for robot learning.

Compared to the traditional method of creating and editing
robot description formats using text editors, Fusion 360, a

Fig. 4. Transfer robot model from design to learning simulation
using ACDC4Robot. (i) Step 1: Import an existing robot model or create a
new robot model from scratch to Fusion 360; (ii) Step 2: ACDC4Robot
plug-in converts robot design to URDF, SDF, or MJCF according to
aimed simulators; (iii) Step 3: Import the robot description format into the
simulator for learning.

Fig. 5. ACDC4Robot Plugin GUI. Clicking the ACDC4Robot start
button will open the settings panel, allowing the user to select the target
robot description format and the target simulation environment.

graphical interface to modify robot design, where modifica-
tions are directly reflected on the robot description file, is
a more intuitive approach. Users can click a few buttons
to generate robot descriptions for learning in simulation
using ACDC4Robot, freeing them from the previous tedious
workflow.

B. Demonstrations with Serial Chain and Closed Chain

It is prevalent to use existing robot models for learning
purposes. Here, we use the UR5e robot manipulator model
downloaded from UR’s website to demonstrate the design-
to-learning process with a serial chain robot, representing
a typical robot type. Fig. 6 shows the process of using
ACDC4Robot for design to learning.

Closed-chain mechanisms are also widely used in robots.
We demonstrate creating a four-bar linkage from scratch to
simulation in Fig. 7.

C. Design to Learning using ACDC4Robot

In our laboratory, we utilize the ACDC4Robot framework
to facilitate the transfer of robot models from the design
phase to the learning phase in simulations. Fig 8 illustrates



Fig. 6. Serial chain robot example using ACDC4Robot. (a) This figure
shows the same UR5e robot manipulator model in three different repre-
sentations: (i) Fusion 360 design model; (ii) XML-based robot description
format; (iii) PyBullet simulation environment for learning. The Fusion 360
design file UR5e.f3d is converted by ACDC4Robot into a UR5e folder
that contains UR5e.urdf and mesh files, which are then loaded into the
PyBullet simulation environment. (b) UR5e manipulator model and its joints
and frames in Fusion 360. (c) UR5e manipulator model and its joints, link
frames that come from ACDC4Robot conversion in Gazebo

the designs of both a wheeled quadruped robot and a
Bennett quadruped robot created in Fusion 360. Through the
application of ACDC4Robot, researchers can seamlessly in-
tegrate these robot design models into the Isaac Sim learning
environment. This process streamlines the transition from
conceptual design to practical, simulation-based learning
applications.

D. Robot Library of the ACDC4Robot Plugin

By enabling the automatic transfer of robot design infor-
mation to learning in simulation through the ACDC4Robot
plugin, the robot design model becomes metadata in the
interactive lifecycle representation of a robot. Consequently,
a library of robot design models helps construct robot
applications using the interactive lifecycle pipeline.

Based on a survey of robot types modeled in URDF within
the roboticist community [10], it was found that robotic
arms, mobile robots, end effectors, and dual-arm robots
are the most frequently used types of robots. Using this
knowledge and investigating several robot datasets, including

Fig. 7. Closed loop robot example using ACDC4Robot. (a). Create a
closed-chain four-bar linkage from scratch in Fusion 360 for simulation in
Gazebo; (b). Closed-chain four-bar linkage model and its joints component
frames in Fusion 360; (c). Closed-chain four-bar linkage model and its
joints, component frames from ACDC4Robot conversion in Gazebo.

Fig. 8. Examples of Using ACDC4Robot for Design to Learning.

RoboSuite6, awesome-robot-descriptions7, Gazebo models8,
and CoppeliaRobotics models9, we have created a robot
model library 10 for the community. This library, listed in
Table III, has been tested with the ACDC4Robot plugin
and can be used out of the box. The robot library can
be downloaded from the ACDC4Robot repository, and we
continue to add content for this library.

6https://robosuite.ai/docs/modules/robots.html
7https://github.com/robot-descriptions/awesome-robot-descriptions
8http://models.gazebosim.org/
9https://github.com/CoppeliaRobotics/models
10https://github.com/bionicdl-sustech/ACDC4Robot/blob/main/RobotLibrary.md



TABLE III
A ROBOT LIBRARY FOR DESIGN TO LEARNING

Robot Name Robot Type Structure
Franka Emika Panda Robotic Arm Serial Chain
Franka Emika Hand End Effector Serial Chain

Kinova Gen3 Robotic Arm Serial Chain
Rethink Sawyer Robotic Arm Serial Chain

Robotiq 2F85 Gripper End Effector Closed Chain
UR5e Robotic Arm Serial Chain

ABB YuMi Dual Arm Robot Serial Chain
KUKA youBot Mobile Robot Serial Chain

IV. DISCUSSIONS AND CONCLUSION

A. Towards a Lifecycle Representation

This article introduces an interactive lifecycle represen-
tation that spans from robot design to robot learning in
simulation. We identify the gap in transferring design in-
formation to the robot simulation environment, leading us to
advocate for using a robot description format to bridge the
robot morphology design and robot learning in simulation.
To facilitate smoother information transfer throughout the
process, we have developed a robot process automation tool
capable of converting design information into simulation
data. This automation is made possible by the one-to-one
mapping relationship between design and simulation plat-
forms. As a result, we have created an open-source plugin
called ACDC4Robot for Fusion 360. This plugin allows users
to convert design information into robot description format,
turning Fusion 360 into a graphical user interface (GUI)
for interactive robot modeling. This interactive lifecycle
process, spanning from robot design to learning, simplifies
the development of robot applications.

B. Limitations of the ACDC4Robot Plugin

Although the ACDC4Robot plugin can achieve an inter-
active lifecycle process from robot design to learning in
simulation, it still has some limitations.

The ACDC4Robot plugin is developed using the Fusion
360 API, making it dependent on Fusion 360. Developing
a platform-independent tool capable of directly converting
a design file into a robot description format for the entire
lifecycle process from robot design to learning would be
more versatile.

Besides, the ACDC4Robot plugin currently only supports
URDF and SDFormat. While SDFormat compensates to
some extent for the limitations of URDF, such as modeling
closed-chain robots, these two robot description formats can
meet most of the needs of academia and industry. However,
including support for exporting other robot description for-
mats, such as MJCF, enhances the application of this tool.

Furthermore, the number of robot models in the robot li-
brary is still relatively low compared to other robot databases.
This is partly due to the challenge of obtaining publicly
available robot models. Additionally, assembling these ac-
quired robot models in Fusion 360 and testing them with
the ACDC4Robot plugin is quite time-consuming. We plan
to incrementally expand the robot library during the future
development process.

C. Towards a Unified Robot Lifecycle Format

The modularity of the robot development process has led
to separate formats for storing information, creating barriers
to data exchange between different stages of development.
While conversion tools have partially addressed this issue,
they must improve efficiency. An ultimate solution would
involve adopting a universal format describing all the infor-
mation across the robot development lifecycle. The adoption
of such a universal format has the potential to enhance the
efficiency of robot development significantly. The Universal
Scene Description (USD) format is moving in this direction.

REFERENCES

[1] Benedikt Feldotto, Fabrice O Morin, and Alois Knoll. The neu-
rorobotics platform robot designer: modeling morphologies for em-
bodied learning experiments. Frontiers in Neurorobotics, 16:856727,
2022.

[2] Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael
Gienger, and Jan Peters. Robot learning from randomized simulations:
A review. Frontiers in Robotics and AI, page 31, 2022.

[3] HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gre-
gory Hager, David Han, Frank Hearl, Jessica Hodgins, Abhinandan
Jain, Frederick Leve, et al. On the use of simulation in robotics:
Opportunities, challenges, and suggestions for moving forward. Pro-
ceedings of the National Academy of Sciences, 118(1):e1907856118,
2021.

[4] Mikhail Ivanou, Stanislav Mikhel, and Sergei Savin. Robot description
formats and approaches. In 2021 International Conference” Nonlin-
earity, Information and Robotics”(NIR), pages 1–5. IEEE, 2021.

[5] Jacques Denavit and Richard S Hartenberg. A kinematic notation for
lower-pair mechanisms based on matrices. 1955.

[6] Leon Žlajpah. Simulation in robotics. Mathematics and Computers in
Simulation, 79(4):879–897, 2008.

[7] Ji hwan Park, Tae Houn Song, Soon Mook Jung, and Jae Wook
Jeon. Xml based robot description language. In 2007 International
Conference on Control, Automation and Systems, pages 2477–2482.
IEEE, 2007.

[8] Keenan A Wyrobek, Eric H Berger, HF Machiel Van der Loos,
and J Kenneth Salisbury. Towards a personal robotics development
platform: Rationale and design of an intrinsically safe personal robot.
In 2008 IEEE International Conference on Robotics and Automation,
pages 2165–2170. IEEE, 2008.

[9] Rosen Diankov, Ryohei Ueda, Kei Okada, and Hajime Saito. Collada:
An open standard for robot file formats. In Proceedings of the 29th
Annual Conference of the Robotics Society of Japan, AC2Q1–5, 2011.

[10] Daniella Tola and Peter Corke. Understanding urdf: A survey based
on user experience. arXiv preprint arXiv:2302.13442, 2023.

[11] Daniella Tola and Peter Corke. Understanding urdf: A dataset and
analysis. arXiv preprint arXiv:2308.00514, 2023.

[12] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard.
A review of physics simulators for robotic applications. IEEE Access,
9:51416–51431, 2021.


	Introduction
	File Formats from Design to Learning
	A Brief Historical Review of Robot Description Formats
	Before Unified Robot Description Format (URDF)
	URDF, SDFormat, and Others
	Beyond URDF


	Methodology
	An Interactive Lifecycle Representation
	Robotic Process Automation from Design to Simulation
	An Open-source Plug-in Using Fusion 360

	Results
	The ACDC4Robot Plug-in with Fusion 360
	Demonstrations with Serial Chain and Closed Chain
	Design to Learning using ACDC4Robot
	Robot Library of the ACDC4Robot Plugin

	Discussions and Conclusion
	Towards a Lifecycle Representation
	Limitations of the ACDC4Robot Plugin
	Towards a Unified Robot Lifecycle Format

	References

