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Robotic metamaterials represent an innovative approach to creating synthetic structures that combine desired 
material characteristics with embodied intelligence, blurring the boundaries between materials and machinery. 
Inspired by the functional qualities of biological skin, integrating tactile intelligence into these materials 
has gained significant interest for research and practical applications. This study introduces a Soft Robotic 
Metamaterial (SRM) design featuring omnidirectional adaptability and superior tactile sensing, combining vision-

based motion tracking and machine learning. The study compares two sensory integration methods to a state-of-

the-art motion tracking system and force/torque sensor baseline: an internal-vision design with high frame rates 
and an external-vision design offering cost-effectiveness. The results demonstrate the internal-vision SRM design 
achieving an impressive tactile accuracy of 98.96%, enabling soft and adaptive tactile interactions, especially 
beneficial for dexterous robotic grasping. The external-vision design offers similar performance at a reduced cost 
and can be adapted for portability, enhancing material science education and robotic learning. This research 
significantly advances tactile sensing using vision-based motion tracking in soft robotic metamaterials, and the 
open-source availability on GitHub fosters collaboration and further exploration of this innovative technology 
(https://github .com /bionicdl -sustech /SoftRoboticTongs).
1. Introduction

The increasing demand for machine intelligence underscores the 
need to engage in material design when developing contemporary 
robotic solutions. Robotic metamaterials offer an innovative approach 
to crafting three-dimensional (3D) structures with responsive prop-

erties, utilizing advancements in additive manufacturing techniques. 
Recent research [5] has demonstrated the creation of robotic meta-

materials capable of programmable motions, self-sensing, and feedback 
control by incorporating piezoelectric, conductive, and structural ele-

ments into a 3D lattice. Another study [28] has developed a material 
that can sense deformations, transitioning between elasticity and plas-

ticity by integrating sensors. Nevertheless, a design challenge remains 
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in striking a balance between the mechanical richness of metamaterials 
and the use of robotic intelligence for practical applications [12,16].

A research gap exists in integrating material design and robot learn-

ing for a combined effort in fundamental research and engineering 
applications [18]. Material scientists and applied roboticists are actively 
exploring the incorporation of tactile intelligence into robotic metama-

terials. The skin, the body’s largest organ, offers protection, regulation, 
and sensation. Tactile interaction between the skin and the surrounding 
environment is vital for dexterous manipulation, and recent research 
has witnessed the adoption of touch-based tactile intelligence in vari-

ous robotic applications [8,30,3]. Tactile sensing is commonly encoded 
as force and torque, with options ranging from basic binary contact de-

tection to advanced 6D force and torque sensing [22,10]. Distributed 
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tactile sensing can be achieved using sensing unit arrays to detect 
normal pressure over the contact surface [2]. Optical, vision, and mag-

netic modalities have also gained traction for advanced tactile detection 
[31,35,33,6].

The growing field of soft robotics allows the development of 
learning-based solutions that mimic the skin’s properties. Interfaces 
with a soft design, especially those with complex physical forms, 
can provide rich deformations for vision-based sensors [19]. Recent 
research leverages magnetic sensors and machine learning to detect 
tactile interactions with high precision [30]. Another study has demon-

strated the integration of visual and tactile modalities through total 
internal reflection to observe external environments and detect tactile 
features [34]. Mechanoreceptive designs with soft structures have also 
shown promise in capturing tactile interactions, such as the Volumetri-

cally Enhanced Soft Actuator (VESA) design, which uses optical sensors 
to detect external forces on soft pneumatic actuators [27]. 3D meta-

materials with a soft design can integrate optical sensors within the 
soft structure or on the contact surface to provide real-time data for 
learning-based applications [32,26].

The field of robot design is evolving to integrate sensing, planning, 
and actuation into a unified unit, addressing the shift towards learning-

based approaches where force-related modalities take precedence over 
accuracy and speed [17]. Tactile perception offers valuable information 
about objects and environmental properties unaffected by occlusion or 
lighting, reducing uncertainty in localized perception [21]. Recent de-

signs, such as the insight finger, offer high-performing tactile sensing 
capabilities [25]. For enhanced fabric defect detection accuracy, a study 
utilized tactile images captured by a vision-based sensor, exceeding the 
capabilities of conventional methods [7]. Force-related modalities are 
increasingly incorporated into learning-based robot control [9]. While 
various tactile sensor designs have been proposed, making them repro-

ducible and cost-effective remains challenging for efficiently collecting 
structured touch interaction data for learning [13].

Tactile sensing is also crucial in robotic manipulation, and many 
studies have adopted vision-based methods to achieve tactile perception 
[11,1]. A novel study presented a universal jamming gripper integrating 
tactile perception, facilitated by vision-based methods, for effective un-

derwater manipulation [15]. In studies [14,20], fiducial markers were 
utilized for visual identification and to detect deformations captured by 
the camera. There have been various attempts to equip soft grippers 
with accurate proprioception and tactile sensing. Recent research trans-

formed conventional fin-ray fingers by integrating rigid nodes into their 
compliant structure, allowing force sensing with vision [29]. GelFlex is 
a novel exoskeleton-covered soft finger with embedded cameras and 
deep learning methods that enable high-resolution proprioceptive and 
rich tactile sensing [24].

This study introduces an omni-adaptive Soft Robotic Metamaterial 
(SRM) with vision-based pose tracking to enable machine learning for 
tactile intelligence in a compact, cost-effective form. The SRM exhibits 
remarkable adaptation to geometric stimuli in all directions, making it 
suitable for adaptive grasping with multi-fingered grippers. We evaluate 
its geometric adaptation to external forces using state-of-the-art motion 
tracking and force-sensing technologies, paving the way for data-driven 
tactile sensing with machine learning. We present two vision-based tac-

tile sensing methods to meet different cost constraints: one with a com-

pact in-finger vision capturing the SRM’s spatial adaptations at a high 
framerate and the other with a portable design on tongs for capturing 
both force and motion data at a lower cost. We demonstrate the tactile 
sensing capabilities of both methods, showcasing the SRM’s potential in 
various tasks involving human-robot interactions in research and edu-

cation. This work contributes to advanced engineering informatics by 
enhancing the capacity for tactile sensing in soft robotic metamaterials 
2

through vision-based motion tracking.
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2. Materials and methods

2.1. Vision-based robotic metamaterial design

The proposed design consists of two primary components shown 
in Fig. 1, including a soft pyramid network forming the structure of 
the metamaterial and a miniature motion tracking system that visually 
records the spatial changes of the metamaterial. Our design begins with 
assembling pyramid polyhedrons, stacking them into multiple layers to 
create a single unit. We then transform this assembly into a network by 
removing all external surfaces. Subsequently, we establish a solid meta-

material body by sweeping all edges with a predefined cross-sectional 
geometry. Flexure joints are added to all mid-layer edges to enhance 
their adaptability during physical interactions.

The specific design under analysis features two vertices at the tip 
and a square-shaped bottom. This design includes a primary interaction 
surface in the form of a trapezoid optimized for improved grasping and 
a secondary interaction surface in a triangle, enabling omnidirectional 
adaptation. The resulting metamaterial can be fabricated using soft ma-

terials like TPU or rubber through 3D printing or molding. As depicted 
in Fig. 1A(i), this metamaterial exhibits remarkable omni-adaptivity 
when in contact with external objects, resulting in significant bending 
in the interaction surfaces, twisting about the central 𝑧-axis and com-

plex volumetric deformations.

The soft nature of the material allows force/torque information gen-

erated from touch-based events to be inferred from compliant deforma-

tions. This study presents two approaches for integrating a miniature 
motion tracking system to capture the compliant deformations and sen-

sitize the metamaterial. When viewed from beneath, the hollow interior 
provides an unobstructed view of the metamaterial’s geometric adapta-

tion, making it ideal for housing a miniature motion-tracking system. 
In Fig. 1A(ii), a high-performing method involves affixing a miniature 
camera (S-YUE WX605 from Weixinshijie) with a high framerate of up 
to 330 Hz to the underside of the metamaterial. In contrast, an alter-

native approach is shown in Fig. 1A(iii), where two fiducial marker 
plates are attached to the back of the metamaterial’s primary interac-

tion surface. An external miniature camera (H200S2.9mm from JIERUI-

WEITONG), mounted on a foldable stand, tracks the markers, encoding 
the metamaterial’s adaptive deformations into a six-dimensional pose 
vector. Both methods transform the metamaterial into a robotized form 
by visually encoding its spatial adaptation into the pose movements of 
the fiducial markers in six dimensions.

2.2. Tracking omni-adaptive motion with 6D force and torque sensing

We comprehensively evaluated our proposed methods utilizing 
state-of-the-art (SOTA) motion tracking and force and torque sensing 
technologies. Three distinct sets of time-series data were collected for 
thorough analysis, encompassing both motion and force measurements, 
which we refer to as the baseline, internal-vision, and external-vision

datasets, with the description summarized in Table 1. Here, the baseline 
dataset is collected using a SOTA motion tracking system with the high-

est measurement accuracy for benchmarking purposes. In contrast, the 
internal and external vision datasets are compared against performance 
evaluations towards differentiated engineering benefits in design and 
applications (see the supplementary materials in Appendix A for fur-

ther details).

To compile the baseline data, we established our experimental setup 
by fixing the robotic metamaterial on a table and mounting it on a 
6D Force/Torque (F/T) sensor (Nano25 from ATI), as illustrated in 
Fig. 1B(i). Five markers were affixed to the metamaterial to monitor 
its adaptive deformation, utilizing a motion-tracking system with 12 
Raptor-12 digital cameras from Motion Analysis. We introduced ran-

dom pushes to the metamaterial using a 3D-printed pushrod, varying 
the pushes’ angles, heights, and depths. Concurrently, we recorded the 

positions of the five markers ([𝑥𝑖, 𝑦𝑖, 𝑧𝑖], 𝑖 = 1, ..., 5) and the forces and 
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Fig. 1. Omni-adaptive soft robotic metamaterial (SRM) with vision-based machine learning for tactile intelligence. (A) The design of SRM with a pyramid 
network structure i) before sensorization and after with ii) internal and iii) external visions. (B) Experimental of SRM’s force-displacement relationships: i) baseline 
setup (obtaining SRM’s deformation using a motion tracking system). ii) internal vision setup (with an F/T sensor under the camera). iii) external vision setup 
(settled on a linear motion platform).

Table 1

Summary of the three datasets collected.

Experiment Data type Dimension Training set size Validation set size

Baseline The positions of the five motion tracking markers: [𝑥𝑖, 𝑦𝑖, 𝑧𝑖], (𝑖 = 1, ...,5) 15 20,500 1,500

Internal Vision The pose of the ArUco marker: [𝑋,𝑌 ,𝑍, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤] 6 21,000 1,500

External Vision The relative pose of two ArUco markers: [𝑋,𝑌 ,𝑍, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤] 6 21,617 1,601
torques acting on the metamaterial at a rate of 120 Hz for 10 minutes. 
Given the metamaterial’s symmetrical design, we exclusively recorded 
interaction data from one of its primary interaction surfaces.

Temporal synchronization between the data from the motion track-

ing system and the F/T sensor was a crucial consideration, as they were 
recorded on separate computers. To address this, we attached two mark-

ers to the pushrod and initiated multiple impacts on the experimental 
platform using the pushrod. This approach allowed us to identify the 
peak values of the pushrod’s velocity and the applied force. The simul-

taneous occurrence of these peak values ensured their precise temporal 
alignment.

The internal-vision dataset was acquired by applying diverse forces 
to the metamaterial while simultaneously collecting data from the F/T 
sensor. Additionally, the pose data of fiducial markers ([𝑋, 𝑌 , 𝑍, 𝑟𝑜𝑙𝑙,
𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤]) was captured at a high frame rate by a miniature camera 
running at 330 Hz for 4 minutes, as displayed in Fig. 1B(ii).

For the external-vision setup, depicted in Fig. 1B(iii), the metamate-

rial was fixed on a linear motion platform. Two fiducial markers were 
attached to the back of the primary interaction surface. An external 
miniature camera affixed to a foldable stand was employed to record 
the pose data of these fiducial markers. The linear motion platform was 
then utilized to induce horizontal and vertical movements of the meta-

material, leading to deformations in various directions. Throughout this 
process, we recorded both the relative pose of the two fiducial markers 
3

and the forces and torques acting on the metamaterial. All recorded 
data was synchronized during post-processing for subsequent analysis 
and machine learning applications.

2.3. Tactile robot learning

We analyzed the robotic metamaterial’s performance using the three 
recorded datasets and developed learning-based models for predicting 
tactile interactions. Fig. 2A illustrates our use of a multi-layer percep-

tron (MLP) model with three hidden layers, comprising 1,000, 100, and 
50 neurons, to evaluate the tactile prediction capabilities using different 
vision-based sensorization methods for the SRM.

For the experiment configuration outlined in Fig. 1B, we collected 
data for the SRM’s force-displacement relationship in its initial baseline

state and after sensorization with internal and external vision. The in-

put features for the network encompass positional and kinetic attributes 
of the markers, encapsulating the SRM’s geometric adaptations across 
approximately 20,000 samples for each model. The ground truth la-

bels consist of 6D force and torque measurements obtained through the 
force/torque sensors. The network’s output provides predicted tactile 
data through 6D forces and torques. We employed this network to train 
three models tailored to the respective dataset from these separate ex-

periments. We randomly selected around 1,500 samples in each case to 

create a test set for evaluating the model’s predictive performance.
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Fig. 2. Neural network for learning tactile intelligence and experimental results. (A) Multilayer perceptron with three hidden layers for learning tactile 
intelligence with positional and kinetic terms as inputs for estimating the tactile force and torques as the outputs. (B) Data distribution of the validation set and 
schematic of excluding data around zero values. (C) Relative errors of the robotic metamaterial with baseline, internal, and external vision.
3. Experimental results

3.1. Vision-based tactile intelligence with SRMs

The experiments involving the baseline, internal-vision, and external-

vision setups yield data with varying ranges. The internal-vision method 
allows the SRM to enable unrestricted deformations in various direc-

tions, whereas the designs of the baseline and external-vision setups 
restrict the range of SRM’s movements due to limitations imposed by 
the markers. To ensure fair and consistent error assessment across these 
experiments despite the differences in data ranges, we employ Mean 
Absolute Percentage Error (MAPE) calculations to facilitate a standard-

ized approach for error evaluation. However, due to the experimental 
setup, the input data for the neural network exhibit a skewed distri-

bution, with a significant portion of the data clustering around zero, 
as shown in Fig. 2B (details of the data distribution and the excluded 
range can be found in Fig. 7 in the Appendix A.). Calculating MAPE 
directly from this data would lead to inaccurate results due to the abun-

dance of values near zero. We employ a data reduction technique for 
the neural network’s output results to address this issue. This method 
involves excluding data points that fall within a range of ±0.1 times the 
overall range of the dataset centered around zero. We then calculate 
the relative error based on the remaining dataset. The relative error is 
calculated as:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐸𝑟𝑟𝑜𝑟 = 1
𝑛

𝑛∑
𝑖=1

||||
𝑦𝑖 − 𝑦𝑖

𝑦𝑖

|||| , (1)

where 𝑦𝑖 represents the true values of the remaining test set, and 𝑦𝑖
4

represents the predicted values.
The results presented in Fig. 2C reveal that all three vision-based 
sensorization methods demonstrate their best performance in terms of 
𝐹𝑦 and 𝑀𝑥, with a relative error falling within the range of [3.31%, 
8.69%]. These two force/torque components specifically result from 
forces applied to the primary interaction surface, making their accurate 
estimation particularly significant in these specific directions. As indi-

cated in Fig. 2C, the internal vision model closely mirrors the baseline

results in predicting forces and torques across various directions, ex-

celling in predicting 𝑀𝑧. However, the external vision model falls short 
in predicting the same torque component.

To provide a practical assessment of the errors in estimating the 6D 
force and torque by the metamaterial, we also computed the Mean Ab-

solute Error (MAE) for the results of the three sets of experiments, as 
shown in Table 2. The MAE was calculated within three neural network 
models we trained: a 3-layer MLP, a 4-layer MLP, and ResNet. The com-

parison showed that the more complex networks closely approximated 
the MAE values of the simpler 3-layer MLP, with variations in different 
directions. This suggests that using a simple 3-layer MLP suffices and 
offers commendable results for this study while considering computa-

tional efficiency. A thorough examination of the results reveals that 𝐹𝑦

and 𝑀𝑥 exhibit commendable MAE performance, especially compared 
to their respective data ranges.

3.2. Dexterous teleoperation with internal vision

We demonstrate the versatility of the robotic metamaterial with in-

ternal vision in facilitating human-robot interaction via teleoperation, 
enabling precise dexterous manipulation. An overview of the system is 
presented in Fig. 3A, where one robotic metamaterial is configured as 
programmable arcade buttons while another serves as a joystick. These 

components are connected to a laptop with a browser-based user inter-
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Table 2

The MAE results for baseline, internal, and external vision datasets using different networks.

Network F/T Baseline Internal Vision External Vision

MAE Data Range MAE Data Range MAE Data Range

MLP with 3 hidden layers (Our method)

𝐹𝑥 (N) 0.132 [-6.211, 5.478] 0.338 [-10.728, 10.759] 0.197 [-1.420, 0.687]

𝐹𝑦 (N) 0.270 [-18.911, 0.015] 0.293 [-14.040, 13.826] 0.548 [-14.832, -0.717]

𝐹𝑧 (N) 0.248 [-6.027, 0.839] 0.209 [-4.631, 0.031] 0.342 [-5.570, 0.351]

𝑀𝑥 (Nm) 0.019 [0.001, 1.002] 0.039 [-1.633, 1.642] 0.045 [0.053, 1.190]

𝑀𝑦 (Nm) 0.010 [-0.287, 0.292] 0.043 [-1.211, 1.211] 0.020 [-0.124, 0.097]

𝑀𝑧 (Nm) 0.009 [-0.086, 0.096] 0.009 [-0.280, 0.233] 0.016 [-0.054, 0.058]

MLP with 4 hidden layers

𝐹𝑥 (N) 0.104

Same as above

0.314

Same as above

0.170

Same as above

𝐹𝑦 (N) 0.225 0.296 0.447

𝐹𝑧 (N) 0.178 0.195 0.300

𝑀𝑥 (Nm) 0.020 0.040 0.039

𝑀𝑦 (Nm) 0.015 0.044 0.021

𝑀𝑧 (Nm) 0.01 0.015 0.019

ResNet18

𝐹𝑥 (N) 0.172

Same as above

0.398

Same as above

0.202

Same as above

𝐹𝑦 (N) 0.254 0.545 0.609

𝐹𝑧 (N) 0.175 0.246 0.359

𝑀𝑥 (Nm) 0.023 0.074 0.054

𝑀𝑦 (Nm) 0.017 0.062 0.025

𝑀𝑧 (Nm) 0.011 0.032 0.017

Fig. 3. Teleoperation using the robotic metamaterial with an internal vision for dexterous manipulation. (A) Setup with two robotic metamaterials as 
controllers with different functions, teleoperating a robotic arm for a peg-in-hole task using YCB objects. (B) Functional mapping as arcade buttons by compressing 
or twisting them in different directions and (C) Confusion matrix of a neural network trained for classifying ten programmable functions by physically interacting 
with the soft network. (D) Functional mapping of the soft network as a joystick by compressing or twisting it in different directions and (E) Two modes of interaction 
for translation in XYZ directions and rotation in RPY angles, corresponding to the typical 6D motion in the Cartesian space, respectively.
face, which communicates with a robot workstation for a peg-in-hole 
task.

We assign high-level robot commands to ten states of the soft 
network’s whole-body deformations, transforming them into pro-

grammable arcade buttons, as depicted in Fig. 3B. To enhance classifi-

cation accuracy, we trained an MLP model using 20,000 training and 
5,000 testing samples, achieving an impressive accuracy of 98.96%, and 
the confusion matrix for classification accuracy is displayed in Fig. 3C.

Concurrently, we programmed the other robotic metamaterial by 
mapping the marker’s displacement in the 𝑥-𝑦 plane and its rotation 
5

about the 𝑧-axis (𝐷𝑥, 𝐷𝑦, 𝐷𝑧) to the robot end-effector’s Cartesian move-
ments in translational (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) or rotational mode (𝑤𝑥, 𝑤𝑦, 𝑤𝑧), de-

pending on the user’s commands, as shown in Fig. 3E.

We conducted a teleoperation experiment for a peg-in-hole task 
employing YCB objects [4]. The interaction sequence, as depicted in 
Fig. 4, involves signals from the arcade button and joystick, both pro-

grammed using the two robotic metamaterials equipped with internal 
vision. Teleoperation unfolds as a series of actions, including pressing 
or twisting the arcade button for mode switching and manipulating 
the joystick through pushing and twisting for motion control until the 
task is completed. This process facilitates discrete and continuous mo-

tion mapping from the human operator to robot actions, encompassing 

movements, mode switches, and gripper control. This enables dexterous 
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Fig. 4. The teleoperation task by using the SRMs and recorded results. (A) The motion sequence of the teleoperation task while interacting with the two soft 
networks. (B) Recorded results for the soft network as arcade buttons. (C) Recorded results for the soft network as a joystick.
object manipulation in 6D interactions (see the supplementary movie in 
Appendix B for further details.).

3.3. Portable interaction with external vision

In this section, we introduce an alternative approach to achieve tac-

tile intelligence using the SRM with external vision, which can gather 
force and motion data to represent various actions concurrently. Fig. 5A 
showcases the system design of a portable tong, which incorporates 
SRMs and an external vision system. This entire setup is conveniently 
foldable into a compact package and can be swiftly assembled on a 
tabletop for use with a laptop through a USB connection.

As illustrated in Fig. 5B, the metamaterial’s omni-directional adapt-

ability empowers it to grasp objects of various shapes securely. It can 
function as robotic fingers, enhancing a robotic arm’s flexibility and 
capability to grip items with diverse geometries and levels of fragility 
securely. In essence, this teleoperated control scheme vastly broadens 
the horizons for the practical applications of robotics in a wide range of 
real-world scenarios.

To facilitate this process, we have developed a web-based user in-

terface that efficiently collects tactile data in batches for model training 
and experimentation, as depicted in Fig. 5C. The interface comprises 
four data screens, arranged on the right, providing a live camera view, 
a visualization interface, a data chart, and a control panel. Users can la-

bel each marker detected by the camera using the control panel. This 
labeling procedure associates the marked point with the corresponding 
object, which is then displayed in a 3D representation on the visual-

ization screen. Specifically, for the six markers affixed to the portable 
tong, the naming process follows a similar approach, enabling the vi-

sualization interface to monitor the three-dimensional movements of 
the portable tong and display the applied gripping force on the object 
within the data chart (see the supplementary movie in Appendix B for 
further details).

Fig. 5D overviews the interaction process between the portable SRM 
and a human operator. This interaction relies on detecting marker dis-

placements to calculate the SRM’s spatial movement and adaptive de-
6

formation, which can be further transmitted to a robotic manipulator 
for teleoperation. The overall action data to be sent to the robotic sys-

tem involves motion data generated by the teleoperator’s hand while 
holding the tongs and the tactile data represented in 6D F/T generated 
when the SRMs interact with the objects. At a low cost, this system pro-

vides a comprehensive set of action data collected from both motion 
and force simultaneously, which is a research challenge for learning 
from demonstrations in robotics [23].

3.4. Teaching tactile intelligence with SRMs

We have taken the development of the portable SRM a step further, 
transforming it into a cost-effective, shareable, and reproducible educa-

tional resource for teaching tactile intelligence. A collection of online 
tutorials is hosted online for open access.2 This transformation is visu-

ally represented in Fig. 6, where students can actively engage with this 
tool, gaining practical experience in tactile data collection and interac-

tive learning leveraging the SRM.

Students can effortlessly employ their laptops to access the online 
interface, establishing a seamless connection through a USB link to the 
camera embedded in this educational tool. Incorporating this tool into 
the classroom setting enables students to gain hands-on experience with 
various aspects of tactile data collection, including the training of mod-

els and the assessment of performance. The portable and user-friendly 
design ensures that the SRM is a convenient tool for acquiring knowl-

edge and skills about tactile sensing and machine learning algorithms, 
making it an invaluable resource for educational purposes (see the sup-

plementary movie in Appendix B for further details.).

4. Discussion

4.1. Tactile intelligence enabled by SRM design

Our research underscores the potential of the designed Soft Robotic 
Metamaterials (SRMs) to achieve vision-based, omni-adaptive tactile 
2 https://me336 .ancorasir .com /?page _id =457.

https://me336.ancorasir.com/?page_id=457
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Fig. 5. Portable interaction using the soft robotic metamaterial with an external vision at a low cost. (A) The system design of a portable tong with SRM 
features an external vision for tactile sensing. (B) Omni-directional adaptation enabled by the SRM for grasping items of various shapes. (C) The web-based user 
interface for tactile data collection. (D) Integration of the SRM with an external vision for human-robot interaction.

Fig. 6. Pilot program implementation for teaching tactile intelligence with the portable tong. (A) Enlaged view of the browser-based user interface for data 
collection. (B) Students engaged in tactile intelligence learning with the portable tong. (C) Manipulating a robot with portable tongs in a virtual physics simulation 
scene: i) Learning trajectory reproduction in PyBullet. ii) Remote control operation of a robot for cube manipulation within the Robosuite environment.
intelligence. The results of this study emphasize this approach’s effec-

tiveness in structuring SRMs with unique material properties, enabling 
adaptability to various tasks, including robotic manipulation, force and 
torque prediction, human-robot interaction, and more.

By examining our experimental results, we have effectively har-

nessed the vision-based approach, coupled with machine learning al-

gorithms, to enable the sensorization of the metamaterial through two 
distinct methods: internal vision and external vision. Utilizing these meth-

ods, we have successfully estimated the magnitude of forces and torques 
applied to this SRM. To establish a benchmark for evaluation, we ini-

tially acquired the force-deformation relationship of our designed SRM 
using a state-of-the-art motion capture system and a 6D Force/Torque 
sensor. The baseline model, which we trained based on this data, serves 
as the ground truth for comparison with the other two methods to assess 
their effectiveness.

Notably, we have observed varying levels of accuracy in predicting 
forces and torques in different directions. In scenarios where forces were 
applied to the primary interaction surface, we achieved high predictive 
accuracy, aligning with the typical use case of the SRM. However, the 
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estimation performance of the external vision method for parameters like 
𝐹𝑥, 𝐹𝑧, 𝑀𝑦, and 𝑀𝑧 exhibited relatively poorer results. We attribute 
this outcome to two key factors:

• The ArUco markers are placed at a relatively greater distance from 
the external camera, resulting in a more limited field of view for 
the markers. This limitation negatively impacts the precision of 
ArUco marker pose estimation, especially concerning the markers’ 
𝑧-direction.

• The unique structural characteristics of this network-like metama-

terial and the placement of markers make it challenging to detect 
substantial deformations in these specific directions, which are not 
well-reflected in the markers’ pose changes.

These same reasons can also elucidate why the performance of the 
internal vision approach is suboptimal in the 𝐹𝑧 direction. However, the 
internal vision design approach demonstrates robust and accurate per-

formance across the remaining five directions. This robustness is due 
to the proximity of the ArUco marker to the camera and its alignment 
with the metamaterial’s 𝑥 − 𝑦 plane. As a result, the changes in the 

marker’s pose are more pronounced, leading to more accurate estima-
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Fig. 7. Histogram of data distribution in validation sets of three experiments. The blue shadow represents the excluded range of data centered around zero.
tions. Moreover, while the performance of the external vision method 
may not match that of the internal vision in accuracy, it offers an ap-

pealing feature with a fully passive and low-cost design as a portable 
system. In practical applications, this design does not necessitate an 
embedded camera as its data source; it solely relies on an external cam-

era to capture SRM tactile deformations and spatial movements. This 
quality makes it a cost-effective implementation, significantly reducing 
the overall deployment expenses.

4.2. Applications in robotic teleoperation

Integrating our designed SRM into robotics unlocks many capabil-

ities. The internal vision design showcases a remarkable capacity for 
high-precision force and torque prediction. Our research demonstrates 
the programmability of the SRMs as a joystick or a push button for 
teleoperating a robotic arm. As users manipulate or push the SRM, it un-

dergoes deformations in various directions, captured by the camera be-

neath. Our trained learning-based model accurately predicts the forces 
and torques applied to the SRMs based on these deformations. We can 
deduce the nature of the user’s actions on the SRMs by harnessing these 
predicted forces and torques. This encompasses identifying whether the 
operation involves translation or rotation in a specific direction, push 
of a button, or even discerning the speed of these movements.

To facilitate tactile intelligence through external vision, we devel-

oped a 3D-printed adapter that connects the metamaterial to the end of 
a kitchen tong. The external USB camera plays a pivotal role in tactile 
sensing, allowing users to manipulate the tong manually while collect-

ing tactile data with the SRMs. This manipulation transfers motion and 
force data, enabling the teleoperation of a UR10e robot arm, effectively 
mirroring the user’s actions for completing tasks involving object grasp-

ing. The teleoperation approach facilitated by the SRM holds tremen-

dous potential across a spectrum of robotic control, manipulation, and 
educational applications. It provides an intuitive means of controlling 
a robotic arm, suitable for tasks such as pick-and-place, assembly, sort-

ing, and more, all while circumventing the complexities associated with 
8

traditional programming methods.
5. Conclusion, limitations, and future works

This study introduces an innovative Soft Robotic Metamaterial 
(SRM) with omni-directional adaptability designed for vision-based tac-

tile sensing in robot learning applications. The SRM demonstrates re-

markable flexibility in responding to external forces, establishing the 
foundation for a tactile sensing paradigm grounded in the vision-based 
observation of SRM deformations. Additionally, the SRM’s fabrication 
is simplified through 3D printing, making it an accessible and shareable 
manufacturing process.

We have showcased two cost-effective tactile sensing implementa-

tions, each harnessing the SRM’s visual adaptability. The internal vision

method, featuring an embedded camera within the SRM, delivers ro-

bust tactile sensing performance across most directions, with relative 
errors below 10% in 5 out of 6 directions. Conversely, employing an 
external camera, the external vision approach exhibits slightly lower ac-

curacy than the internal method. However, external vision eliminates the 
need for an onboard camera and associated wiring, substantially reduc-

ing system complexity and cost. Both of these sensing modalities hold 
the potential to provide flexible and reliable tactile feedback for var-

ious robotics applications, including teleoperation. This highlights the 
promising avenue of advanced materials and design research with soft 
robotic metamaterials with broad-reaching applications.

While this system has demonstrated promise in robot learning, there 
are areas where improvements can be made. Expanding the tactile data 
collection process to encompass a broader range of interaction methods 
beyond a pushrod could yield a more comprehensive training dataset. 
Furthermore, implementing lower latency communication and control 
options could enhance the teleoperation experience over longer dis-

tances. With these enhancements to bolster the system’s capabilities and 
performance, the sensing approach could become more versatile, deliv-

ering more nuanced tactile interactions for advanced robot learning and 
teleoperation applications through materials and design.
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Appendix A. The three datasets

Please refer to the datasets for more information, including details 
about our data processing methods, at this link: https://github .com /
bionicdl -sustech /SoftRoboticTongs. Refer to Fig. 7 for a histogram of 
the data distribution.

Appendix B. Video demonstration - Supplementary material

Please refer to the supplementary movie for a demonstration of the 
proposed Soft Robotic Metamaterial.

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .matdes .2024 .112629.
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