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Abstract— Vision-based tactile sensing provides a novel solu-
tion to robotic proprioception using visual information to infer
physical interaction on the contact surface. In this paper, we
leveraged the omni-adaptive capability of a soft finger with
differential stiffness by adding a monocular camera at its
bottom to track its spatial deformation while interacting with
objects. We modeled this soft finger’s physical interaction and
measured the stiffness distribution through experiments. The
camera captured the soft finger’s deformation when interacting
with probes for different contact forces and positions. Using
a neural network modified from AlexNet, we proposed a
preliminary estimation model of the contact force and position
using the captured images. The results show that the proposed
method can achieve an accuracy of 90% for position estimation
and a normalized root mean squared error of 3.4% for
force estimation, showing the reliability and robustness of the
proposed sensing method.

soft robotics, tactile sensing, machine vision, omni-
adaptation, robot learning

I. INTRODUCTION

A robot system built with soft material or structure pro-
vides superior performance during unstructured interaction,
where there remains considerable design space to embed
extra sensors for robot proprioception. While classical grip-
pers are built with rigid links to transmit power through
mechanical linkages, soft robots leverage their structural
design with soft material to generate desirable deformation
while transmitting force and form closure during grasping.
Integrating such soft mechanical intelligence with sensing
capabilities can provide novel solutions to robotics’s unstruc-
tured interaction and manipulation problems.

Tactile perception with soft and flexible structural design
can be traced back to the mimic of human skin during manip-
ulation, providing rich data and contact with the environment
to facilitate subsequent decision-making and manipulation.

*This work was partly supported by Shenzhen Key Laboratory
of Intelligent Robotics and Flexible Manufacturing, Shenzhen Sci-
ence and Technology Innovation Commission [JCYJ20220818100417038,
SGDX20220530110804030], National Science Foundation of China
[62206119, 52335003], Guangdong Provincial Key Laboratory of Human-
Augmentation and Rehabilitation Robotics in Universities. Authors X. Han
and S. Liu contribute equally as co-first authors. Authors F. Wan and C.
Song are the corresponding authors.

Fig. 1. Overview of the vision-based tactile sensing method for omni-
adaptive soft finger with the workflow for real-time perception on the left
and experiment platform on the right.

Several tactile sensing methods with soft structures have been
proposed, such as GelSight [1], GelSlim [2], soft force sensor
[3], and optical sensor [4]. Vision-based tactile sensing has
attracted considerable attention due to the camera’s non-
contact field sensing of the soft interface’s refined structural
deformation during physical contact, providing rich infor-
mation on tactile interaction, including texture, color, force,
and position [5]. However, existing methods rarely provide
both contact force and position simultaneously. So, in this
paper, we present a vision-based tactile sensing method based
on mechanical models and data-driven learning to estimate
contact force and position for an omni-adaptive soft finger,
as shown in Fig. 1.

A. Related Work on Soft Finger with Passive Adaptation

Shintake et al. [6] recently reviewed soft robotic finger de-
signs, including active and passive soft fingers. While a rich
literature is available on fluidic-driven soft robots, passive
soft finger design provides a convenient integration with the
existing gripper system by replacing the finger component.
For example, inspired by the Fin Ray Effect [7], FESTO
commercialized a planar design of layered soft fingers in a
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triangular shape, capable of adaptive form closure in two
dimensions. Crooks et al. [8] integrated the finger structure
into a gripper design with increased load in the vertical
direction. Through comparative experiments, Elgeneidy et
al. [9] demonstrated that material flexibility can effectively
improve finger shape adaptability. Xu et al. [10] installed
a pressure sensor on the surface of the seized object and
established a correlation model between the clamping force
and the motor input. Zapciu et al. [11] and Gandarias et
al. [12] implemented tactile perception with adaptive finger
structure as the object.

B. Related Work on Vision-based Tactile Sensing

The maturation of machine vision technology and the
increasing use of learning-based methods have propelled the
development of vision-based tactile sensing with soft robots.
This is notably challenging due to the non-linear elastic
materials used in these robots’ construction [5]. GelSight is a
visual-tactile sensor that uses a camera, a thick flexible layer
covering a reflective film, and an LED to capture changes
in light intensity produced by surface stress [1], [13]. A
photometric stereo vision algorithm [14], [15] enables three-
dimensional reconstruction of the interactive interface. Ohka
et al. [16] designed a tactile elastic unit that employs multiple
conical protrusions at the bottom of a cylindrical head to
capture deformation information by detecting changes in
light spots. Hanafiah et al. [17] analyzed contact slip force
and designed an algorithm to enhance grasping performance.
Additionally, a vision-based tactile sensor created using
lattice offset includes one or more layers of lattice inside
and uses a mapping model to establish a relationship between
lattice offset field and contact force for accurate contact force
estimation [18].

C. Proposed Method and Contributions

This paper proposes vision-based tactile sensing using
a monocular camera fixed at the bottom of a soft finger,
capable of omni-directional adaptation during physical con-
tact, aiming at achieving reliable force and position sensing
for unstructured grasping interaction in challenging environ-
ments or as a manipulation interface for remote fine-motor
control. Contributions of this paper are listed below:

1) Analyzed the mechanical properties of the omni-
adaptive soft finger during interaction with the sim-
plified model representation, which is the basis of the
non-contact sensing method.

2) Proposed a vision-based tactile sensing method for
the omni-adaptive soft finger. It established a position-
force mapping model by interpolation and an image-
position mapping model based on the neural network.

3) Realized the real-time perception of the contact force
and position with the proposed sensing method.

Next, Section II analyzes the mechanical properties of
an omni-adaptive soft finger and proposes the vision-based
tactile sensing method. Section III proposes two mapping
models to realize the real-time sensing interaction. Section

IV discusses the performance of the proposed design com-
pared with state-of-the-art system design using vision-based
tactile sensing. Final remarks are included in section V.

II. METHOD

A. Structure Analysis of the Omni-adaptive Soft Finger

This paper leverages an earlier design of a soft finger
network with differential stiffness design along its finger
direction [19]–[21], as shown in Fig. 2(a). Its inverted cone-
shaped design from the finger base to the fingertip in a lattice
network was constructed with soft material, resulting in a
differential stiffness revolving around its finger direction. The
resultant finger network can adapt to a three-dimensional
form in omni-directions during physical contact. It can be
easily customized into different shapes by changing the
number of nodes at the bottom or tip of the finger and
connecting links. For the sake of analysis in this paper, we
mainly analyzed the finger’s grasping in a tilted up-right
state, as shown in Fig. 2(b). We define the horizontal loading
displacement of a single finger relative to the object as ∆x,
the loading height of the center of curvature in the contact
area as h, the coefficient of dynamic friction on the contact
surface as µ, and the radius of curvature in the contact area as
R. A finger load state can then be described as (µ,R,∆x, h).

Fig. 2. The soft finger has (a) network structure (CAD model), and (b) &
(c) are omnidirectionally adapted to YCB objects. (d) The transverse feed
∆x causes adaptive deformation of the finger contact surface. (e) and (f)
show the vertical and horizontal force analysis when interacting.

We first analyze the finger’s interaction force during con-
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tact with the following static balance equations,

Fg = Ffly + Fc, (1a)

Fcl =

n∑
i=1

FNlisinφi, (1b)

Ffly =

n∑
i=1

Ffyi, (1c)

Fflx =

n∑
i=1

Fflxi, (1d)

Fx = Fnl + Fflx, (1e)

where Fg is the grasping force, Fnl and Fcl are the horizontal
and vertical reaction force due to coating, Fx is the horizontal
force under the joint action of friction and supporting forces,
and Ffl is the sum in the vertical direction of the frictional
resistance from the finger under the action of Fnl. When
the critical state of sliding occurs on the contact surface, the
grasping force becomes sufficient under the current loading
state, and

Fflyi = µFnli, (2)

where µ is the friction coefficient of the contact surface. We
assume the static friction force is approximately equal to the
sliding friction force. By combining Eqs. (1) and (2), the
effective load can be expressed as

Fg = µFnl + Fcl. (3)

The load state (µ,R,∆x, h) affects both Fnl and Fcl, so
the expression can be written as

Fg(µ,R,∆x, h) = µFnl(µ,R,∆x, h) + Fcl(µ,R,∆x, h).
(4)

In the spring system, the stiffness coefficient E is a
physical quantity used to describe the deformation resistance
ability of the spring. Similarly, in our finger structure, we
define the equivalent stiffness at the contact point as

Ee =
Fx

∆x
, (5)

where ∆x is the horizontal displacement at the loading
position. The equivalent stiffness Ee represents the horizon-
tal clamping force generated by the finger under the unit
horizontal loading displacement condition. Similarly to Fg ,
it is also related to the friction coefficient µ, the curvature
radius R, the horizontal displacement ∆x, and the loading
position h, so that we can express it as Ee(µ,R,∆x, h).

B. Simulated Experiments for Parameter Estimation

Next, we set up a simulation test shown in Fig. 3 in
Solidworks and MATLAB to analyze the distribution charac-
teristics of Fg and Ee and the influence of different contact
conditions. To facilitate analysis and description, we divide
the vertical plane of the finger into three parts of top, middle,
and bottom, and each part is divided into upper and lower
sections. Considering that the bottom is not involved in
grasping, the analysis is mainly for the top and middle parts.

Fig. 3. The simulation environment consists of a finger, pedestal, and ring.
The finger is divided into six parts: top-upper, top-lower, middle-upper,
middle-lower, bottom-upper, and bottom-lower.

First, we analyzed the distribution of Fg in (∆x, h) space
on the assumption that both µ and R are constant values. Af-
ter several attempts, we chose R = 60mm, µ = 0.001, ∆x =
1−10mm, h = 27.66−69.15mm. After calculation, we get
the distribution of Fg as shown in Fig. 4. To better represent
the distribution of Fg , we project the surface onto two planes
Fg vs. ∆x in Fig. 4(b) and Fg vs. h in Fig. 4(d), respectively.
The spatial distribution of Fg in Fig. 4(b) is relatively regular
so that the two curves in Fig. 4(c) can represent the changing
characteristics: as ∆x increases, the sign of Fg stays the
same, and the absolute value increases monotonically. We
used the second-order coefficient for fitting, and R2 was
greater than 0.99. Therefore, we can conclude that under the
same loading height h, the effective load Fg is second-order
linearly related to the horizontal loading displacement ∆x,
and the absolute value of Fg will increase with the increase
of ∆x, and the sign remains unchanged. According to Figs.
4(d)&(e), we can find the appropriate height for interaction.
Within the variation range of h, Fg approximately shows
a non-strict monotonic increasing trend of increasing first,
then horizontal, and then increasing. The zero points of the
curve are about h = 45mm, slightly larger than the medium
height value, which means that the interaction position of
this structure should be above the medium height of the
finger under the current contact condition. In other words,
the interaction above the middle-upper part is the optimal
strategy.

Similarly, through simulation, we obtained the distribution
of Ee in (∆x, h) space (as shown in Fig. 5) under the
assumption that both µ and R are constant. It can be seen that
the distribution surface presents a regular concave surface.
Fig. 5 (c) shows the curves of Ee vs. ∆x at several heights.
We calculate the second-order fitting coefficients of Ee to ∆x
at all loading heights, and R2 is more significant than 0.98,
which means a strict second-order linear correlation. We also
found that when the interaction was near the medium height
(h = 34.58 − 47.02mm), the change range of Ee with ∆x
was small, regarded as a constant value. After calculation, we
learn that in h = 34.58 − 47.02mm within the scope of the
coefficient of variation was less than 2%, while other places
were greater than 4%. Therefore, we can conclude that there
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Fig. 4. Fg distribution with constant µ and R: (a) the distribution surface
under (∆x, h), (b) the projection of (a) onto Fg vs. ∆x, (c) characteristic
curve (the red curve in (a)), (d) the projection of (a) onto Fg vs. h, and (e)
characteristic curve (the violet curve in (a)).

is an adaptive area at 0.17H height. Under a specific contact,
the equivalent stiffness values can be fundamental and remain
unchanged in the area of a horizontal load of constant height.
Fig. 5(d) is the projection of the surface on Ee vs. h,
showing that in the entire loading interval if ∆x remains
constant, the trend of Ee changing with h is the same, so
a characteristic curve in Fig. 5(e) can be used to show the
overall trend of change. When ∆x = 10mm, the value of
Ee decreases first and then increases with the increment of
h, and the minimum value occurs when h = 41.49mm. It is
important to note that, through the calculation of the effective
load distribution, it is found that under the quasi-smooth
condition, the effective grasping force of the loading position
below the median height (H = 27.66, 34.58mm) is more
prominent in the negative direction, which is not conducive to
vertical grasping. Therefore, the discussion of the maximum
value is all set under the condition of h ≤ 0.5H , which is
the conditional maximum.

In the following, we analyze the influence of different
dynamic friction coefficient µ and target contact position’s
curvature radius R on the distribution of Fg and Ee in
(∆x, h) space from the two aspects of distribution trend
and conditional maximum value. The environment of the
following simulation is the same as the previous one, which
would not be repeated.

First, we calculated the distribution of Fg in (∆x, h) space
with various values of µ by simulation assuming that R is

Fig. 5. Ee distribution with constant µ and R: (a) the distribution surface
under (∆x, h), (b) the projection of (a) onto Ee vs. ∆x, (c) characteristic
curve (the red curve in (a)), (d) the projection of (a) onto Ee vs. h, and (e)
characteristic curve (the violet curve in (a)).

a constant value. To observe the change in the value size of
Fg , we plotted the data points into a heat map in Fig. 6(a).
There are 18 rows, with each of the three rows representing
the data obtained for the same µ. We found that the position
of the maximum of the sufficient load Fg did not change,
which always obtains where ∆x = 10mm, h = 55.32mm,
under various friction coefficients µ. The changes in the value
size of µ would not lead to the shift in the distribution trend
variation of Fg . Aiming to learn more about the change of the
maximum sufficient load under different loading conditions,
we plotted Fg,max vs. µ in Fig. 7(a), which have strict linear
correlation relation with R2 as high as 0.999. Furthermore,
we plotted the related Fn and Fc in the exact figure and found
that both present linear correlations with the variation of µ.
We also did the linear fitting to Fg , and µ of every state point
in the loading displacement space (∆x, h), and found that
the average value of R2 is all more significant than 0.999,
which concludes that this kind of linear correlation presents
the whole loading space. Therefore, we know that under the
assumption that the contact curvature radius R remained the
same, the sufficient load Fg of any point in space (∆x, h) and
the friction coefficient µ satisfied the following expression:

Fg(µ,R,∆x, h) = a(R,∆x, h)µ+ b(R,∆x, h), (6)

which simplifies the calibration so that we only need to
calibrate the parameters a and b under a few of µ and predict
the Fg values under all µ.
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Fig. 6. Distribution map for (a) Fg with different µ, (b) Fg with different
R, (c) Ee with different µ, and (d) Ee with different R on (∆x, h).

Next, we will analyze the friction coefficient µ on the
equivalent stiffness Ee. To do a quantitative analysis of the
variation of Ee, we record the value of each simulation point
in the heat map in Fig. 6(b). It is clearly shown in the heat
map that the maximums of Ee are all located at which ∆x =
10mm and h = 55.32mm even if the µ value varied. To
describe this relation more accurately, we plotted the linear
fitting line of Ee,max and µ in Fig. 7(b). Furthermore, R2 is
0.964, meaning that Ee increases as µ increases under strict
linear correlation.

Additionally, we analyzed the distribution feature of Fg

value in the (∆x, h) space in the particular µ condition. We
selected objects with various values of R (6, 20, 40, 60, and
80 mm, respectively) for interaction. Aiming to explain and
compare the impact of the increase of the R value on the
Fg , we plotted the data points into the heat map in Fig. 6(c).
Then, we figured out where the maximum of Fg located does
not change with the R value, and the maximal Fg were all
occur at which ∆x = 10mm and h = 69.15mm. Moreover,
we plotted the correlation between Fg and R (Fig. 6 (b))
to indicate the changing trend of the maximum under this
particular condition. According to Fig 2-25, the Fg value
declines after a rise with the increase of the R value: the
Fg value rises where R < 60mm, and it declines where
R ≥ 60mm.

We also analyzed the distribution feature of Ee value in
the (∆x, h) space. Similarly, we utilized the heat map in
Fig. 6(c) to record the specific value of each state point.
According to this figure, the R value change makes little
difference on the thorough trend of Ee. The maximum all
occur at which ∆x = 10mm, h = 69.15mm. Furthermore,
we plotted the correlation between Ee,max and R in Fig.
7 (d) to figure out that they have a linear correlation with
R2 = 0.993. Therefore, we concluded that the maximal Ee

would not change in the simulation measuring range, while
the value size would increase as a linear correlation with the
rise of the R value.

To conclude, the parameters’ (Fg and Ee) distributions of
the finger’s structure in the (∆x, h) space and the impact
from µ were verified through simulation. Besides, based

Fig. 7. The maximum value of the effective load Fg,max and the equivalent
stiffness Ee,max for different friction coefficient µ and contact curvature
radius R.

on the relation (Fx, Fy) = f(Fg, Ee) (relation f has been
explained above), we know that the distribution of (Fx, Fy)
in the (∆x, h) space has apparent regularity with specific µ
and R.

C. Vision-based Tactile Sensing with Omni-adaptive Finger

Our proposed sensing system consists of a finger, a cam-
era, and a tilted base mount due to the relatively large design
space within the internal structure of the omni-adaptive soft
finger. The camera is fixed at the center of the tiled-base
mount, where the finger is also fixed on the surface of the
mount. This way, the camera’s field of view can look right
into the finger’s internal structure to capture its deformation.
The captured image is pre-processed to position and force
information during the interaction. The sensor image set A,
loading position set P , and contact force set R are used to
label the image I captured by the camera, the loading height
and horizontal displacement (∆x, h), and the horizontal
component Fx and vertical component Fy of the contact
force. Loading position and contact force together constitute
the complete external tactile information (∆x, h, Fx, Fy), as
shown in Fig. 8.

Fig. 8. The vision-based tactile sensing finger consists of three parts: (a)
finger, camera, and tilted-base mount. The camera captures an image in (b),
which would be filtered to reflect the deformation effectively.

Under the condition of specific friction coefficient and
contact curvature radius, we can establish the image-position
mapping model fIP from the sensing image set I to the
loading position set P through the deep learning method
with the geometric features of the finger captured by the
camera. We can use the loading calibration experiments to
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establish the position-force mapping model fPR by using the
loading position set P and the contact force set R. Therefore,
when the contact deformation occurs at a specific time t, the
current loading position (ht,∆xt) can be predicted from the
sensing image i through fIP , and then the corresponding
loading force information Fx,t, Fy,t can be solved through
fPR.

III. EXPERIMENT AND RESULTS

A. The Position-force Mapping Model

We established the position-force mapping model fPR of
the finger through the calibration experiment (setup is shown
in Fig. 1. Considering the medium part of the finger will be
mainly utilized during the process, we calibrated this part
with high spatial resolution. Also, a pushrod with a roller
was used for interaction so that the friction coefficient µ
is considered zero, and the contact radius is R = 6mm.
The range of the data calibration is ∆x = 0.1 − 19.9mm
with a stride of 0.2mm, and h = 25.5 − 49.5mm with
a stride of 1mm. ATI nano 17 was set under the pushrod
to get the forces Fx and Fy . The contact process was
repeated three times for each location to take the average
value. After the experiment, the scatter data were obtained.
Then, based on the experience of the simulation in Section
II, the continuous mapping relation (Fig. 9) is obtained by
interpolation. Finally, we input the loading position (∆x, h)
into this mapping to gain the corresponding loading force.

Fig. 9. The distribution of (a) horizontal loading force Fx and (b) vertical
loading force Fy in (∆x, h) space in the position-force mapping model
after linear interpolation.

B. The Image-position Mapping Model

While establishing the image-position mapping model, we
proposed a reconstituted neural network called Alexnet-M.
The network was built from Alexnet based on the transfer
learning method. We modified the output layer to be the
loading position classification with the well-trained Alexnet
neural network as the main body (Fig. 10). It made the most
of its strength to be pre-trained based on massive data sets to
shorten the development cycle. Additionally, the experiment
environment was supposed to be the same as the previous
experiment when sampling at each point since these data
sets were composed of the image-loading position data pairs
under various conditions.

We defined the contact area to be the medium part (∆x =
0 − 20mm, and h = 25 − 50mm) of the finger, which was

Fig. 10. Restructured Alexnet-M neural network with new output layer of
the loading position classification.

the same as the previous experiment. Moreover, to realize
the classification, this area was divided into 50 blocks of
2× 5mm2 as the sensing units (Fig. 11 (a)), whose position
coordinates represented by the middle coordinates of the
blocks. Besides, the blocks’ width 2mm indicates the res-
olution in the ∆x direction, while the height 5mm indicates
the resolution in the h direction. The initial experiments
showed that the image information captured by the camera
had low sensitivity in the h direction but high sensitivity in
the ∆x direction, so the 2×5mm2 shape reaches satisfactory
classification accuracy. The resultant dataset was divided
based on the loading position into 50 types, each containing
50 data points.

Fig. 11. (a) The entire contact area of the finger is divided into
50 perceptual blocks for classification with the proposed image-position
mapping model. (b) The origin images captured by the camera need to be
pre-processed with (c) HSV transform, (d) HSV filtering, and (e) connected
component filtering.

Before training the neural network, we had to pre-process
the images to filter out the noise information. The image
background would be filtered out with only the finger struc-
ture remaining through the following steps.

• HSV transition The original images with size of 1280×
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720 × 3 were transformed from RGB to HSV.
• HSV filtering Most background noises were filtered

out by setting the threshold of the H channel since
the environmental change makes little difference to the
H channel of a specific color. Besides, considering
the reflected light from the contact part between the
terminal and the finger, the high brightness part is
filtered by setting the threshold of the H channel to
prevent its impact on the result.

• Connected component filtering The connected fields
of the binarized images were identified to extract the
largest connected field in each image. The sporadic
noises were filtered out, and the edges were smoothed.

• Extension and shrink The single-channel images were
extended to three-channel images, whose channels re-
mained consistent with the original images. Then, the
images were shrunken to match the neural network’s
input layer.

We randomly divided the pre-processed data into the train-
ing set, validation set, and test set based on the proportion
of 7:2:1. We used the train set to train the Alexent-M neural
network (Fig. 10) and utilized the SDGM algorithm with
the learning rate set at 0.0001 and the training cycle at 15.
The experiment platform was the Xiaomi Mi Notebook Pro
with the only CPU, Intel Core i7-8550U. The trained neural
network has the forecast accuracy of 88.20% and 90.00% for
the validation sets and test sets.

C. The Real-time Interaction System

The real-time interaction system is based on the position-
force and image-position models. First, the original images
were captured by the camera and input into the image-
position model after treatment. The predicted contact posi-
tion was the output and the input of the position-force model.
Then, we got the corresponding force information. Finally,
the predicted contact position and the force would serve as
the output of the real-time interaction system. For operating
and demonstrating easily, we developed the GUI shown in
Fig. 12(a), which contains all the information mentioned
above. The frequency of this system was around 10Hz. We
randomly selected 250 (∆x, h) groups among the contact
field to test. The estimation accuracy of Fx and Fy is shown
in Figs. 12(b)&(c). The R2 score is 0.998 and 0.946 of the
predicted Fx and Fy , and the RMSE is 0.820 and 0.355.

We compared the real-time interactive system designed in
this paper with the existing relevant research systems in Table
I. It can be concluded that our system is superior to other
systems in perceiving contact position and can even realize
2D position perception. As for the quality of perceiving the
contact force, our system is better than most of the present
models except GelSight. All these conclusions indicate that
our system has preliminary practical value and the potential
to promote its quality further.

IV. DISCUSSION

In the image-position mapping model, the smaller the
blocks of the contact area, the higher the perceptual reso-

Fig. 12. (a) Real-time interaction system is shown as a GUI with the
captured image, running frequency, predicted position, and predicted forces.
(b) & (c) show the estimation accuracy of Fx and Fy .

TABLE I
COMPARISON OF THE ESTIMATION RESULTS.

Position (Accuracy) Force (NRMSE*)
Our system 90.00% 3.4%

GelSight [15] Disable 2.7%
Khan [22] Disable 6.1%
Han [23] 85.42% 5.81%

Thuruthel [24] Disable 15%
Massari [4] 37.64% 6.6%

* NRMSE: normalized root mean square error.

lution. However, correspondingly, blocks with smaller sizes
would lead to little differences between each type of image,
which may cause low estimation accuracy. Therefore, a trade-
off was supposed to obtain the optimal block size. In contrast,
the contact area was divided into three widths, 4, 2, and 1mm,
in the ∆x direction, and three kinds of heights, 8, 5, and 3
mm, in the h direction. The estimation accuracy of the neural
network is shown in Fig. 13. Both the validation and test
sets would have lower estimation accuracy with decreased
width and height. If taking both the resolution and accuracy
of estimation into account, the width 2mm and the height
5mm would be the most appropriate size, which is consistent
with the selected size in Section III-B.

Fig. 13. (a) and (b) show the classification accuracy for different widths
and heights of the blocks in the contact area.

It should be noted that since the sorting algorithm was
adopted in the image-position model, the predicted loading
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positions were rectangular regions instead of the accurate
points. Furthermore, because the specific (∆x, h) of the
rectangular area was not confirmed, the average contact
force of all the tested points within the rectangular region
represents the contact force of this region to evaluate the
system accuracy. Under this strategy, the estimation accuracy
was satisfactory, with the rectangular region small enough.
Furthermore, establishing a regression model would gain
better results when the data set is large enough.

V. FINAL REMARKS

This paper proposed a vision-based tactile sensing method
for an omni-adaptive soft finger with a differential stiff-
ness structure design. The model analysis and parametric
description of the distribution law of the sufficient load
and equivalent stiffness of the omni-adaptive soft finger
under different loading conditions are carried out through
qualitative and quantitative perspectives. The results show
that the finger has excellent structural characteristics in omni-
directional adaptation, which supports the establishment of
the models. By adding a monocular camera at the bottom
of the finger, we achieved a compact system design of a
vision-based soft finger for robotic perception. We designed
an interaction system for the soft finger and conducted
an optimization analysis. Image-position and position-force
mapping models were designed to ”see the force” so that the
system perceived the contact position and force with good
robustness when interacting with the environment.

In the future, we will keep working on the system to
improve our understanding of the relation between the
soft finger’s mechanical properties and structural parameters
through multi-modal sensing to provide better support for
intelligent soft robots. The proposed design also holds the
potential to support manipulation tasks both on land and
underwater.
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