
IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023 165

Sampling-Based Planning for Retrieving
Near-Cylindrical Objects in Cluttered

Scenes Using Hierarchical Graphs
Hao Tian , Chaoyang Song , Senior Member, IEEE, Changbo Wang ,

Xinyu Zhang , and Jia Pan , Senior Member, IEEE

Abstract—We present an incremental sampling-based task and
motion planner for retrieving near-cylindrical objects, like bottle,
in cluttered scenes, which computes a plan for removing obstacles
to generate a collision-free motion of a robot to retrieve the target
object. Our proposed planner uses a two-level hierarchy, including
the first-level roadmap for the target object motion and the second-
level retrieval graph for the entire robot motion, to aid in deciding
the order and trajectory of object removal. We use an incremental
expansion strategy to update the roadmap and retrieval graph
from the collisions between the target object, the robot, and the
obstacles, in order to optimize the object removal sequence. The
performance of our method is highlighted in several benchmark
scenes, including a fixed robotic arm in a cluttered scene with
known obstacle locations and a scene, where locations of some
objects or even the target object are unknown due to occlusions.
Our method can also efficiently solve the high-dimensional plan-
ning problem of object retrieval using a mobile manipulator and
be combined with the symbolic planner to plan complex multistep
tasks. We deploy our method to a physical robot and integrate
it with nonprehensile actions to improve operational efficiency.
Compared to the state-of-the-art approaches, our method reduces
task and motion planning time up to 24.6% with a higher success
rate, and still provides a near-optimal plan.

Index Terms—Manipulation planning, motion and path
planning, object retrieval, task planning.

Manuscript received 24 December 2021; revised 20 April 2022; accepted
16 June 2022. Date of publication 22 August 2022; date of current version 8
February 2023. This work was supported in part by the HKSAR Research Grants
Council (RGC) General Research Fund (GRF) HKU under Grant 11202119 and
Grant 11207818, and in part by the Innovation and Technology Commission of
the HKSAR Government under the InnoHK initiative. The work of Chaoyang
Song supported by the Shenzhen Long-term Support Program for Higher Ed-
ucation. This aritcle was recommended for publication by Associate Editor J.
Kober and Editor W. Burgard upon evaluation of the reviewers’ comments.
(Corresponding author: Jia Pan.)

Hao Tian and Jia Pan are with the Department of Computer Science,
University of Hong Kong, Hong Kong, and also with the Centre for Gar-
ment Production Limited, Hong Kong (e-mail: nicktian.ecnu@gmail.com; pan-
jia1983@gmail.com).

Chaoyang Song is with the Department of Mechanical and Energy Engineer-
ing, Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: songcy@ieee.org).

Changbo Wang is with the School of Computer Science and Technol-
ogy, East China Normal University, Shanghai 200050, China (e-mail: cb-
wang@sei.ecnu.edu.cn).

Xinyu Zhang is with the School of Software Engineering, East China Normal
University, Shanghai 200050, China (e-mail: xyzhang@sei.ecnu.edu.cn).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TRO.2022.3191596.

Digital Object Identifier 10.1109/TRO.2022.3191596

NOMENCLATURE

O The set of all objects (including the target object).
Ocol The set of objects colliding with the robot.
Og The target object.
M The roadmap of the target object.
E The set of roadmap edges.
N The set of retrieval graph nodes.
H The set of retrieval graph edges.
L The exploration limit.
Π The set of robot motions.
xs The start configuration point of the target object.
x Roadmap node.
ng The goal node of the retrieval graph containing xg.
g The set of preset grasps.
rb The radius of footprint circle of the object.
rf The thickness of the gripper finger.
Or The sequence of objects to be removed for retrieving the

target object.
Onew The set of new objects is found in the occlusion scenario.
Oi Object i.
X The set of roadmap nodes.
G The retrieval graph.
Nr The sequence of retrieval graph nodes along the best

path.
R The object removal sequence.
K The sampling limit.
T The number of roadmap samples in each iteration.
xg The goal configuration point of the target object.
ns The start node of the retrieval graph containing xs

n Retrieval graph node.
gj Grasp j.
rg The radius of the target object.
rbase The half of the gripper base length.

I. INTRODUCTION

OBJECT retrieval in cluttered scenes is a challenging task
and motion planning (TAMP) problem, e.g., the robot

retrieves an item from the refrigerator in the kitchen or the
shelves in the warehouse, as shown in Fig. 1(a). From the task
perspective, the robot must determine which objects to remove in
what order, even in challenging situations where the robot only
has partial observation to the cluttered objects due to occlusions.

1552-3098 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4612-9777
https://orcid.org/0000-0002-0166-8112
https://orcid.org/0000-0001-8940-6418
https://orcid.org/0000-0001-5000-2483
https://orcid.org/0000-0001-9003-2054
mailto:nicktian.ecnu@gmail.com
mailto:panjia1983@gmail.com
mailto:panjia1983@gmail.com
mailto:songcy@ieee.org
mailto:cbwang@sei.ecnu.edu.cn
mailto:cbwang@sei.ecnu.edu.cn
mailto:xyzhang@sei.ecnu.edu.cn
https://doi.org/10.1109/TRO.2022.3191596

166 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

Fig. 1. (a) Retrieving the target object from the refrigerator in the kitchen [1].
(b) We propose a sampling-based TAMP method for the near-cylindrical object
retrieval, where the object is represented by a compact cylinder. The robot must
remove and relocate some red obstacles before retrieving the blue target object.
(c) A physical experiment using a 7-DOF robot with our method. The target
object is marked with a red box. In order to retrieve the target, the robot has to
remove two objects that block the robotic motions.

From the motion perspective, the robot must determine how to
manipulate objects in an optimal manner avoiding the collisions
between the robot, the target object, and the obstacles. In this
way, object retrieval in cluttered scenes inherits challenges from
both motion and task planning.

Object retrieval can be formulated as a complex optimization
problem whose objectives include minimizing the number of
obstacles to be removed, optimizing the order of removing these
obstacles, and computing the low-level collision-free trajectories
accomplishing the manipulation and movement of different ob-
jects in a most efficient manner. Its exact solution must consider
the complex spatial relations among the robot and all objects
in the scene, and thus is of high computational complexity
exponential to the number of objects in the scene. As a tractable
solution, some recent works [2], [3] first preconstruct a graph
to encode the complex spatial relations for all objects in the
scene, though it needs to check the collisions between all object
pairs and thus is time-consuming. Then, object retrieval task is
approximately solved by planning over the graph. The graph
will be updated during planning because invalid edges due
to robot–obstacle collisions will be deleted and thus frequent
replanning is necessary. If some critical edges important for
the connectivity from the robot to the target are removed, the
algorithm would fail to find a solution. A more tractable alter-
native is to greedily compute the minimum set of obstacles that
block the robot from reaching and retrieving the target, i.e. by
solving the minimum constraint removal (MCR) problem [4].
However, the robot may collide with more objects when actually
removing one obstacle, resulting in another new retrieval task
with the obstacle to be removed as the target. In this way, the
object retrieval problem can be recursively decomposed into a
hierarchy of object retrieval subproblems, but such greedy task
decomposition may provide a performance significantly worse
than the exact solution, making appropriate heuristics necessary.

In this work, we propose a sampling-based TAMP algorithm
to retrieve the target object in a cluttered scene, as shown in
Fig. 1(b) and (c). Our algorithm mainly handles near-cylindrical
objects in cluttered scenes and provides a tractable and efficient
way to minimize the number of obstacles to be removed for
clearing the way and retrieving the target object. In task plan-
ning stage, we use an incremental sampling-based method to
construct a hierarchy consisting of the roadmap and the retrieval
graph to describe the obstacles that block the way to reach

the target object. The task planning results are a sequence of
obstacles to be removed from the scene. In motion planning
stage, we perform feasibility checking, including grasp planning
and motion planning for pick-and-place actions, to determine
whether the obstacles in the task plan can be manipulated by
the robot. If the motion planning fails due to robot–obstacle
collisions, the collision obstacles will be given as feedback to
the task planner and a new task plan will be computed.

Our framework mainly focuses on generating the sequence of
removal obstacles with valid pick-and-place actions. Although
nonprehensile actions such as pushing can sometimes be more
efficient than prehensile pick-and-place actions, the cluttered
scenes may not leave enough space for nonprehensile actions
to relocate objects. Nevertheless, our framework is general and
if the removal object and its goal position can be reached by
nonprehensile actions, it can also leverage nonprehensile actions
for accomplishing object retrieval.

Our contributions include the following.
1) We propose a two-level hierarchy that records target

object–obstacle collisions and robot–obstacle collisions
to aid in determining the order and the subtasks of object
removal in cluttered scenes.

2) We propose a task planner that uses an incremental expan-
sion strategy with interleaved updates of the roadmap and
the retrieval graph to find a sequence of removal objects,
which can update the infeasible sequence by collecting
failures from motion planning.

3) We show the probabilistically completeness of our in-
cremental strategy to find removal object sequence and
polynomial time complexity of roadmap expansion and
retrieval graph update.

4) We extend our algorithm to handle complex tasks, such
as the case when the target object is unknown due to oc-
clusions, mobile manipulation, and the combination with
symbolic planners. Our algorithm can be easily integrated
with nonprehensile actions such as pushing to further
improve operational efficiency.

The rest of this article is organized as follows. In Section II,
we provide a review of the related work. In Section III, we
formulate the object retrieval problem. In Section IV, we first
introduce the overview of our algorithm and then describe how
to construct the roadmap and retrieval graph to help compute the
task plan. Section V describes the extension of our algorithm to
handle complex tasks. Section VI describes the implementation
details and experimental results of our algorithm on different
tasks. We demonstrate the performance of our method in both
simulation and physical environments, from simple retrieval
tasks to complex mobile manipulation.

II. RELATED WORK

In this section, we give a brief overview of prior work related
to object retrieval in cluttered scenes.

A. Manipulation Planning Among Movable Obstacles

Manipulation planning among movable obstacles (MAMO)
using prehensile actions has been studied extensively in robotics
[5], [6], which has been proved to be NP-hard even for simple

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 167

TABLE I
PLANNING PERFORMANCE OF OUR PLANNER. WE TEST SCENARIOS WITH DIFFERENT NUMBERS OF OBJECTS, AND WE TEST EXPLORATION LIMIT LWITH

VARIOUS INITIAL VALUES

The numbers in parentheses are standard deviations. The number of removed objects including the target object.

cases with cubic obstacles or when all the obstacles are fixed and
observable [7]–[9]. Most previous works aimed at designing a
complete planner or improving its efficiency for some special
cases of MAMO [10]–[12]. A few probabilistically complete
solutions are available [6], [10], [13], but they are limited to
2-D/3-D navigation due to their explicit representation or dis-
cretization of the robot’s configuration space [10], [13]. When
the obstacles are removable, there exist ad-hoc solutions for
manipulation planning in cluttered scenes [14]–[17], but they
do not consider the optimality in terms of the number of objects
to be removed and the computational complexity. Some recent
works deal with object rearrangement problems [18]–[21]. In
some cases, each object needs to be moved only once (i.e.,
monotone), and in other cases, some objects may need to be
moved multiple times (i.e., nonmonotonic).

Some recent works [2], [3], [22] solve the MAMO problem
by preconstructing a traversability graph to encode the complex
spatial relations for all objects in the scene. A shortest path on the
graph from the robot node to the target node provides the smallest
set of objects that needs to be removed. The graph construction
step is time-consuming due to the collision checking between all
object pairs, especially when the number of objects is large. The
graph structure will be updated during planning when edges
invalidated by robot–obstacle collisions are deleted from the
graph and replanning over the updated graph is performed.
However, replanning does not consider important information
like which specific obstacle blocks robot’s motion. The planner
may search multiple times to find the successful path, so it takes
a lot of time to perform motion planning. The representation
and usage of such details are one main contribution of our
method. In particular, we use incremental sampling to explore
the cluttered scene and construct a retrieval graph that represents
the collision states of the target object, rather than a graph with
all obstacles involved. In this way, the computational complexity
of our algorithm is independent with the number of objects in the
scene. During planning, the robot–obstacle collisions would be
added into the retrieval graph as new nodes, rather than simply
deleting invalid edges. With such collision information encoded,
replanning on the retrieval graph is able to minimize the number
of removal objects more efficiently.

Most previous MAMO works focused on using prehensile
actions, which require a firm grasp of an object and thus are diffi-
cult to achieve when objects are close to each other. Some recent
works leveraged nonprehensile actions to rearrange objects for
reaching the target object [14], [17], [23]–[25]. For instance, [14]
proposed a planning framework that utilizes nonprehensile ac-
tions to grasp an object in the clutter. To determine the set of
obstacles to be removed given a planned trajectory, this method

first computes the shortest distances between the obstacles and
the end-effector when the robot follows the planning result,
and then all obstacles collide with the end-effector will be
removed. This strategy is greedy and thus may take redundant
or even incorrect removal actions. In this way, rearrangement
can be accomplished via simple nonprehensile actions (e.g.,
pushing [26], [27]), but it is difficult to predict where and how
much an object will move after or during pushing due to the
contacts and frictions between the gripper, objects, and table.
Such difficulty can be handled via reinforcement learning or
physics based simulation [28]–[30].

B. Task and Motion Planning

MAMO can also be solved as a special case of the TAMP [16],
[31], [32]. Many TAMP approaches employ high-level symbolic
planning along with low-level motion planning for computing a
sequence of continuous robot motions. However, TAMP frame-
works could be inefficient for manipulation tasks in cluttered
scenarios. First, the task planner may search in a huge state
space, especially when the number of objects in the clutter is
large. Second, in a dense scene, the low-level motion planning
of robot motions could fail frequently, the task planners have to
iterate over symbolic plans in a brute force manner whenever the
motion planning fails [33]. To resolve this issue, some previous
works introduced geometric backtracking, in which the planner
will search for different geometric instances until a solution is
found [34], [35]. To reduce the search space, they proposed
to maintain the interval constraints over placement parameters.
Hierarchical task networks (HTNs) have also been used for sym-
bolic search where HTNs backtracking is applied over choices
made by the geometric module, allowing more freedom to the
geometric planning [36], [37]. Besides sampling-based motion
planners, nonlinear optimization has also been used for solving
TAMP problems by identifying geometric parameters on the
geometric level where all geometric parameters are considered
simultaneously without backtracking [38], [39]. Learning tech-
niques [40]–[42] have been applied to the TAMP framework to
accelerate inference and replace the handcrafted search heuris-
tics. Their goal is to guide the search procedure toward a more
promising task plan and reduce the number of motion planning
problems to be solved. Recently, [43] and [44] proposed a
classifier to evaluate the feasibility of motion planning generated
by discrete decisions in the task domain. However, the limitation
of their methods is that only one single action is predicted, but
the combinatorial complexity of TAMP especially arises from
action sequences and it is not easy to use such a classifier to
predict the action sequence in TAMP.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

TAMP combining a symbolic task planner suffers from the
huge planning graph in a densely cluttered scene, which leads to
the high complexity of computing the removal and manipulation
actions of all possible objects. Our method is not symbolic but
our method could help symbolic task planners focus on the
important objects and reduce the search space.

C. Minimum Constraint Removal

Determining the smallest set of obstacles to be removed for the
target retrieval can also boil down to the MCR problem, which
minimizes the number of violated constraints or obstacles to be
removed along a planned path [4], [45], [46]. The problem has
been proven to be NP-hard in discrete cases and some greedy and
asymptotically optimal algorithms were proposed in [4], which
however does not consider the detailed interaction between the
robot and the obstacles when actually executing the removal
operation. Our method provides a tractable way to generate
obstacle removal sequences with intermediate pick-and-place
actions. We use a two-level hierarchical graph to collect collision
feedback when the robot fails to grasp the object and efficiently
replan from failure to minimize the number of removal ob-
stacles. The roadmap graph is the first level of our two-level
hierarchical graph. The roadmap expansion incrementally grows
the roadmap and collect target object–obstacle collisions to find
initial object retrieval sequences. If the initial retrieval sequence
obtained from the roadmap graph is valid, which means the robot
can successfully retrieve all objects in the sequence, the task is
completed. However, if there are robot–obstacle collisions when
the robot grasps the object, we use the second retrieval graph
to collect these collision feedbacks and efficiently replan from
failures.

III. PROBLEM FORMULATION

Suppose there are m near-cylindrical objects in a cluttered
scene (see the example scenarios shown in Fig. 1), including
one target object Og and m− 1 removable obstacles O =
{O1, . . . , Om−1, Og}, and there are no collisions between these
objects. Our goal is to retrieve the target objectOg while avoiding
any collisions. However, the objects located in the front of
the clutter will obstruct the robot to retrieve objects behind in
the cluttered scene, which means that the robot cannot move
over the object to grasp other objects. Thus, to accomplish the
task, the robot needs to determine first which objects need to
remove and then an optimal removal order for manipulating them
one by one. Formally, we denote Or as sequence of objects to
be removed from the cluttered scene. Our goal is to retrieve the
target object Og , while minimizing the number of objects inOr

min |Or|
s.t.W (Oi, gj) ∩ (O/Oi

removed) = ∅ ∀Oi ∈ Or

∃gj ∈ g

Or ⊆ O
Og ∈ Or

Oi
removed = {O1, . . . , Oi−1} ⊆ Or (1)

where W (Oi, gj) is the swept volume of the object Oi when
it is being grasped by grasp gj and moved along with the
manipulation motion of the robot, g represents the preset grasps,
Oi

removed = {O1, . . . , Oi−1} contains objects that are previously
removed before Oi. Here, we have several assumptions as
follows:

1) We assume the objects around the target object prevent the
robot from generating collision-free motions to reach and
retrieve the target, which is the key challenge for our task.

2) We assume the robot cannot perform overhand grasping
due to the restriction of the shelves.

3) We assume all sampling object poses are reachable by the
robot.

4) We assume that the objects in Or removed before Oi

will not affect the manipulation of Oi, i.e., each object’s
interaction feasibility is monotonic within the constraint
relationships of objects in the cluttered scene. As a result,
we can exclude objectsOi

removed from checking collisions
with W (Oi, gj). This is reasonable in practice, for in-
stance by placing these removed objects in an area far
from the cluttered scene and the released free space will
increase the success rate of feasible interaction.

The optimization problem described in (1) is very complicated
and is NP-hard. Solving this problem requires not only optimiz-
ing the order of object retrieval, but also considering robot con-
straints and computing the robot grasp poses and motions. Thus,
we simplify the problem by only considering near-cylindrical
objects and also leveraging the objects’ monotonic interaction
feasibility to decouple the problem into two stages as shown in
Fig. 2: 1) find an ordering sequence of remove objects in task
planning stage; 2) find a feasible manipulation of each object in
the sequence in motion planning stage.

We denote a pose of the target object in an open space outside
the cluttered scene as the start configuration xs and the initial
pose of the target object inside the cluttered scene as the goal
configuration xg . At first glance, this nomenclature may look
a bit strange because the target object is being retrieved from
the goal xg to the start point xs. Our choice lies in the fact
that when removing objects that block the way, the end-effector
of the robot will start from objects on the periphery (i.e., near
xs) and finally reach the target object hiding inside the cluttered
scene (i.e., atxg). Settingxs as the start point enables the motion
planner to return a path from the scene periphery to the target
object’s position, from which we can conveniently generate a
object removal sequence. In addition, the exchange of the start
and the goal configurations will only reverse the path direction
without changing the path’s geometry.

IV. INCREMENTAL SAMPLING-BASED TAMP FOR OBJECT

RETRIEVAL

Our sampling-based TAMP framework is shown in Fig. 2,
with the left and right parts for task planning and motion
planning, respectively. In particular, our task planner uses
an incremental sampling strategy to construct a roadmap
M(X,E) for the target object attached to the robot’s end-
effector, where X and E are the sets of roadmap nodes and
edges, respectively. By searching on M, we can find a path

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 169

Fig. 2. Pipeline of our algorithm. Task planning: We use an interleaved update strategy to incrementally (1) expand the roadmap and (2) update its corresponding
retrieval graph. Based on the retrieval graph, the task plan is computed by finding a retrieval path reaching the target with an allowed number of collision obstacles
to be removed (4). Motion planning: We check whether the robot can compute collision-free motions to reach and manipulate these candidate removal objects (5).
If motion planning fails, the robot collisions will be feedback to the task planner to update the task plan (3).

connecting xs and xg with the minimum number of colli-
sion objects and can generate a sequence of objects to be
removed.

However, just removing this sequence of objects is not suf-
ficient for successful target object retrieval, because the afore-
mentioned planning does not consider the robot components
besides the end-effector. Thus, motion planning follows to check
if the plan is executable by the robot. If not, the collision events
involving the robot must be collected and feedback to the task
planner for updating the sequence of objects to be removed.
To enable geometric reasoning of task planning in the discrete
decision space of objects, our task planner constructs a retrieval
graph G(N,H) over the roadmapM, where N and H are the
sets of retrieval graph nodes and edges, to record the objects that
collide with the entire robot and the order in which collisions
occur. By searching a path from the start node to the goal node
on G, we can obtain another sequence of objects to be removed,
including objects colliding with the entire robot and the attached
target object, as the task plan. The details of this TAMP solver
are discussed below.

A. Overview: Incremental Sampling-Based TAMP Using
Interleaved Updates

As shown in Algorithm 1, our sampling-based planner uses
an incremental expansion strategy with interleaved updates. In
particular, we first initialize the roadmapM with two isolated
nodes {xs,xg}, which are the start and goal configurations of
the target object. Then, we perform an incremental expansion
that interleaves the update of M and G to find the object
removal sequence as well as check whether the robot could
remove objects in the sequence and retrieve the target object.
This incremental procedure repeats until the target object Og is
retrieved. This process includes several main subroutines:

1) Roadmap Expansion: Our task planner expands M by
incrementally sampling in the configuration space of the

Algorithm 1: PLANNINGWITHINTERLEAVEDUPDATES.
Input: target object start configuration xs, target object
goal configuration xg, objects O, target object Og , robot
rob, preset grasps g
Output: object removal sequenceR = {Or,Nr}, the set
of robot motions Π
1: /*Initialize the roadmap and retrieval graph*/
2: M(X,E)← ({xs,xg}, ∅)
3: G(N,H)← (∅, ∅)
4: /*Incremental expansion with interleaved updates*/
5: L = 0 � exploration limit
6: while Og is not retrieved do
7: /*Roadmap expansion*/
8: M← EXPANDROADMAP(xs,xg,M,L)
9: /*Retrieval graph expansion and update*/

10: G, {nnew} ←
EXPANDGRAPHFROMROADMAP(G,M)

11: for ∀n′new ∈ {nnew} do
12: G,R ← UPDATERETRIEVALGRAPH(n′new,G)
13: end for
14: /*Feasibility checking*/
15: Π←

FEASIBILITYCHECKING(G, Og, rob,O,R,L,g)
16: L += 1
17: if Π is not Empty then
18: break
19: end if
20: end while
21: returnR,Π

target object attached to the robot’s end-effector to explore
the cluttered environment around the target object. Since a
collision-free path is not possible without removing some
obstacles, the expansion procedure will also explore the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

Fig. 3. Example of roadmap expansion. (a) The initial setup of all objects in the scene. The yellow disks are obstacles and the blue disk is the target object Og .
The red disk represents the footprint of the target object plus the gripper geometry, where the solid disk is for the goal configuration xg in the cluttered region and
the dashed disk is for an assumed start configuration xs in the open space. The entire scene is bounded using shelves on three sides. (b)–(c) initialize the roadmap
by generating samples with the sampling limit K = 0, where the black circles represent the geometry shapes for these samples and the black dots represent the
collision-free samples. (d)–(e) incrementally expand roadmap by sampling with the sampling limit K = 1. The green dots are the samples that collide with one
object.

in-collision region in the configuration space by allowing
each sample to have collisions with a limited number
of obstacles. Details about the expansion are given in
Section IV-B.

2) Retrieval Graph Expansion and Update: The retrieval
graph G is constructed over the roadmap M and will
be expanded in two cases: when the roadmap expands
and during the feasibility checking. After the roadmap
expansion, we expand G by clustering the roadmap nodes
that collide with the same set of obstacles and setting the
clusters as G nodes. Then we collect sets of obstacles as
the target object–obstacle collisions and add them to G
nodes. G also expands during feasibility checking. We
create new nodes for the robot-obstacle collisions that
include the obstacles colliding with the robot and connect
new nodes to G nodes where the feasibility checking fails.
After adding new nodes, we update the retrieval graph
to compute the object removal sequence R = {Or,Nr},
where Or is the sequence of objects to be removed and
Nr is the sequence of retrieval graph nodes along the best
path from the start node to the goal node. The details of G
and how to update G are described in Section IV-C.

3) Feasibility Checking: After obtaining the object removal
sequence R, our motion planner performs feasibility
checking, which includes grasp planning and motion
planning, to check if objects in Or could be removed
sequentially by the robot. If the checking fails and the
robot collides with some other obstacles, we collect these
robot–obstacle collisions into the new retrieval graph node
and add it to G. The task planner follows to update G to
search for a new task plan in terms of a new object removal
sequence. Details about the feasibility checking are given
in Section IV-D.

The incremental expansion is controlled with an exploration
limit L, which allows each sample in the roadmap to collide
with at most L objects. In particular, if the task planner cannot
find a path connecting xs and xg on the current graph, it will
increase L by one to explore more regions in the configuration
space corresponding to more cluttered areas in the workspace.
The increment of L continues until a path connecting xs and

xg is found. We find it is important to start from low L (e.g.,
L = 0) because if we start from large L, the relatively open
regions that are reachable with low L will be undersampled,
which will negatively affect the task planner’s ability to explore
the cluttered regions requiring higher L.

B. Roadmap Expansion

We use an example scene consisting of 2-D disk objects as
illustrated in Fig. 3 to explain the roadmap expansion. We use
2-D disks to represent the objects in the scene because we use
3-D cylinders to represent the near-cylindrical objects. The size
of the cylinder of the target object is determined by the target
object plus the gripper geometry to reflect the fact that the object
can move only being attached to a gripper, as shown in Fig. 3(a).
This cylinder representation of the target object is conservative,
which can find the potential collision samples, where the gripper
collides with the obstacles when manipulating the object. We
construct the roadmapM by samplingx and y coordinates of the
target object within the cluttered space, which is a subset of R2,
as shown in Fig. 3(b). The sampling process is controlled by the
sampling limit K, which restricts each generated sample to col-
lide with at mostK objects. We gradually increaseK to balance
the number of samples in different regions of the configuration
space where the target object collides with different numbers
of objects. In particular, we initialize K to be 0 and update K
after every Traise steps using an incremental raising strategy as

proposed in [4]:K +=
L

(T − Tcur)/(Traise)
, where T is the total

number of sampling iterations and Tcur is the current sampling
iteration index. For instance, Fig. 3(c) shows a roadmap with
K = 0. By increasing K to be greater than 0, we can explore
the in-collision regions in the configuration space, as shown
in Fig. 3(d) and (e), where the green nodes are samples that
collide with a single object. Since the roadmap nodes can collide
with the objects, we denote Col(xi) and EdgeCol(xi−1,xi) as
the sets of objects colliding with the target object when it is at
node xi and moves along the edge between nodes xi−1 and xi,
respectively. These two sets can be computed efficiently using
collision checking and continuous collision checking routines.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 171

Algorithm 2: EXPANDROADMAP.
Input: target object start configuration xs, target object
goal configuration xg , roadmapM, exploration limit L
Output: expanded roadmapM

1: K ← 0 � roadmap sampling limit
2: for Tcur ← 1 . . . T do
3: xrand ← SAMPLE()
4: xnearest ← NEAREST(M,xrand,K)
5: xnew ← EXTEND(xnearest,xrand, δ,K) � maximum

distance δ of the new edge
6: M.X←M.X ∪ {xnew}
7: Xnear ← NEAR(M,xnew)
8: for ∀xi ∈ Xnear do
9: if |EdgeCol(xnew,xi)| =

|Col(xnew) ∪ Col(xi)| and d(xnew,xi) < δ then
10: M.E←M.E ∪ {(xi,xnew)}
11: end if
12: end for
13: Every Traise steps, raise K � adjust roadmap

sampling limit
14: if K � L then
15: K ← L− 1
16: end if
17: end for
18: returnM

Algorithm 2 describes how the roadmap is expanded. We first
generate a random sample xrand and find the nearest node xnearest

that satisfies the sampling limitK (Line 3–4). We generate sam-
ples and compute the nearest neighbor in the (x, y) coordinate
system without considering the orientation of samples, because
we aim to compute, which obstacles collide with the target object
when the target object is retrieved from the clutter, rather than
computing accurate motions of the target object. The conserva-
tive cylinder representation contains different orientations of the
target object when performing collision detection, so we only
need to consider the position of samples. We use an RRT-like
operation Extend(xnearest,xrand, δ,K) to extend an edge from
xnearest to a node xnew in the direction of xrand (Line 5–6). The
length of the new edge is limited by the maximum distance δ,
i.e.,

xnew = xnearest +min

(
δ

d(xnearest,xrand)
, 1

)
(xrand − xnearest).

We require the number of objects colliding with the target object
along the edge connecting xnearest and xnew to be no more than
K, i.e., |EdgeCol(xnearest,xnew)| ≤ K. If this requirement is not
met, we perform bisection search on the edge connecting xnew

and xnearest until it is satisfied. Finally, we connect xnew to its k
nearest neighbor nodes Xnear (Line 7–12). For each neighbor
node xi ∈ Xnear, we check if the edge distance between xi

and xnew is shorter than δ and whether |Col(xnew) ∪ Col(xi)| =
|EdgeCol(xnew,xi)|. If the latter condition holds, it implies that
the edge would neither directly pass through other objects nor
collide with objects that do not belong to the collision set of

Fig. 4. Retrieval graph construction via clustering. The clusters are illus-
trated as ellipses. ns and ng are retrieval graph nodes that contain the target
object start configuration xs and goal configuration xg , respectively, where
ns.ClusterNodes = {xs} and ng .ClusterNodes = {xg}; n4 and n8 are clus-
tered from the roadmap nodes that collide with O4 and O8, respectively, where
n4.NodeCol = {O4} and n8.NodeCol = {O8}.

these two vertex nodes (Line 9). If the edge connecting xnew to
xi passes both checks above, the edge will be added to M.E
(Line 10).

The roadmap expansion process continues until we can find
a path connecting xs and xg on the resulting roadmap M.
When traversing this path, we can collect a sequence of objects
colliding with the target object, which will make the candidate
task planning result that includes the object removal sequence.

C. Retrieval Graph Expansion and Update

1) Retrieval Graph: Since we only take into account the
robot’s end-effector when operating the roadmapM, the robot
may collide with some more obstacles when actually executing
the removal of the object sequence computed above. After being
aware of such new robot–obstacle collisions, the task planner
should update the plan accordingly. One straightforward solu-
tion is to inform each roadmap node inM.X, which extra objects
need to be removed to make itself collision-free. However, it is
not efficient to store such information in all the nodes because
nearby nodes in the roadmap usually share the same set of
robot–obstacle collisions and thus there exists huge storage
redundancy if we did that, especially for complex scenarios with
a large roadmap.

To reduce such redundancy and improve graph search ef-
ficiency, we propose a higher-level data structure called the
retrieval graphG, which is constructed by clustering the roadmap
nodes that are connected with each other and collide with
the same set of obstacles, as shown in Fig. 4. Each cluster
is treated as a retrieval graph node and added to G.N, with
nodes ns and ng for the start and goal of the retrieval graph,
respectively. The retrieval graph node n is a tuple of four items
n = 〈ClusterNodes,NodeCol,PathCol,BestNeighbor〉. Clus-
terNodes is the set of roadmap nodes that are clustered into
n.NodeCol is the set of obstacles colliding with the target
object or the robot, which is shared for all roadmap nodes in
ClusterNodes. For each path connecting the start node ns and
n, we can define the path’s set of collision obstacles as the union
of NodeCol sets for all nodes on that path. PathCol contains the
minimum collision obstacle set from ns to n along the path

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

Fig. 5. Retrieval graph expansion by collecting feasibility checking failures.
(a) The red line represents the best path with the minimum number of collision
obstacles from the start node to the goal node. (b) Assume the object O8 has
been removed, but the feasibility checking of O4 fails because the robot collides
with O3 and O5. (c) New retrieval graph nodes n1

4 and n2
4 are created with

the robot-obstacle collision sets {O3} and {O5}, and new nodes are added to
the retrieval graph. The red lines are new candidate paths from the start node to
the goal node.

computed by the greedy search. The topology of this path is
maintained in BestNeighbor, which is the label of n’s neighbor
node in the path connecting n and ns. More discussion about
these PathCol and BestNeighbor are available in Section IV-C3.

The edges in the retrieval graph are added based on the
connections between the roadmap nodes, where if two roadmap
nodes are connected with each other and clustered in two re-
trieval graph nodes, we connect these two retrieval graph nodes
and add this edge to G.H. By adding clusters to G.N and adding
new edges to G.H, we obtain the retrieval graph G.

2) Retrieval Graph Expansion: Since the retrieval graph G
is constructed over the roadmap M, we need to expand G
based on the new M after the roadmap expansion. Our task
planner calls EXPANDGRAPHFROMROADMAP in Algorithm 1 to
cluster the roadmap nodes using the same clustering operation
as introduced above and obtain new clustering nodes set {nnew}.
G is then expanded by adding these new clustering nodes to G.N
and their connected edges to G.H.

The retrieval graph nodes clustered fromM only record the
set of obstacles colliding with the target object and the robot’s
end-effector, but G also needs to maintain the set of obstacles
colliding with the entire robot. As a result, besides expanding the
retrieval graph G from the clustering roadmap nodes, our task
planner expands G when new collisions between the robot and
the obstacles are reported by the motion planner, i.e., when the
feasibility checking fails. For example, suppose we find a path
from ns to ng that go through n8 and n4, where n8.NodeCol =
{O8} and n4.NodeCol = {O4}, as shown in Fig. 5(a) with the
red line. Suppose O8 has been removed and the robot tries to
manipulateO4. Here, the feasibility checking ofO4 fails because
two grasp poses of the robot collide withO3 andO5, respectively,
as shown in Fig. 5(b). To collect these robot–obstacle collisions,
we create two new retrieval graph nodes, n1

4 and n2
4, and as-

sign n1
4.NodeCol = {O3} and n2

4.NodeCol = {O5}. Since the
above failure occurs when we check the feasibility of removing
objects contained in n4.NodeCol after removing objects in
n8.NodeCol, it implies that the edge between n8 and n4 is not
feasible and it is necessary to remove the objects colliding with
the robot after removing the objects in n8.NodeCol and before
removing the objects in n4.NodeCol. Therefore, we delete the

invalid edge between n8 and n4 and then add new graph nodes
n1
4 and n2

4 to G by connecting them with n8 and n4, as shown in
Fig. 5(c). In this way, we obtain two updated removal sequences
when the robot traversing from n8 and n4: 〈O8, O3, O4〉 and
〈O8, O5, O4〉.

3) Retrieval Graph Update: According to NodeCol of each
node, we can find a path with removal obstacles from the start
to the goal on G. However, some connected retrieval graph
nodes may have their NodeCol sets overlapped and thus directly
searching the path according to the size of NodeCol of each
node cannot minimize the number of removed obstacles. For
example, suppose a node’s NodeCol is {O1} and its neighbor
node’s NodeCol is {O1, O2}. If we search path according to
the NodeCol size of each node, the path collision size between
these two nodes is 3, but the actual size is 2. To avoid this issue,
we adopt the coverage set of path defined in [4]. We compute the
collision set of a path by accumulating NodeCol sets of all nodes
along the path. We define PathCol of a node n as the minimum
collision set of the path from the start node ns to n computed
by the greedy search. Formally, we set PathCol of start node ns

to be equal to its NodeCol, i.e., ns.PathCol = ns.NodeCol. The
PathCol of node n in G is computed recursively as follows:

n.PathCol = n.NodeCol ∪ nbest.PathCol (2)

nbest = argmin
ni∈Nneighbor

{|n.NodeCol ∪ ni.PathCol|} (3)

where Nneighbor is the set of neighbor nodes of n, nbest is the
best neighbor node of n, which minimizes the path collision set
from the start node to n through nbest. This operation is feasible
because we restrict the roadmap edge from colliding with objects
that are not contained in NodeCol of the two vertex nodes, and
the retrieval graph edge is equivalent to the roadmap edge.

For computing the best path with the minimum PathCol set
to ng , we adopt the greedy search algorithm proposed in [4],
as described in Algorithm 3. In particular, we first compute the
best path with the smallest path collision set among all the paths
connecting the start node ns and the new node nnew (Line 1–
7). For each neighbor node nneighbor of nnew, we compute the
collision set of the path from the start node ns to nnew through
nneighbor (Line 2). We compute the best neighbor node with the
minimum PathCol size and set its label to nnew.BestNeighbor
(Line 3–6). Since the new node added to G may provide a better
path to reach its neighbors, we continue to check which nodes
are affected by the new node and update nodes using a greedy
search strategy (Line 8–19). In this greedy search, we store the
candidate nodes in an ascending order priority queue Qn where
the priority is according to the size of PathCol (Line 8). In each
iteration, we pop up the node n with the minimum PathCol size
(Line 10), and then we use the same strategy as above to check
whether the best path from the start node to n could provide
a better path with a smaller path collision set from ns to its
neighbor nneighbor (Line 11–18). The updated nneighbor will be
added to Qn. When Qn is empty or the goal node is updated,
the algorithm terminates.

The solution computed by the greedy algorithm is optimal
on G according to Theorem IV.2 in Section IV-E. We set the
label n.BestNeighbor to the best neighbor node nbest of n, so

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 173

Fig. 6. 〈|NodeCol|, |PathCol|〉 for the retrieval graph nodes in Fig. 5. The red
lines are the best paths from the start node to the goal node. The nodes that are
not on any paths connecting ns and ng will not be updated, so the PathCol set
of these nodes is empty and |PathCol| of these nodes is assigned INF.

tracing the label BestNeighbor from n to the start node, we can
find the best path with the smallest path collision set from ns

to n. Fig. 6 shows the NodeCol and PathCol of each node for
the two retrieval graphs in Fig. 5, with the red lines as the best
paths. There may exist multiple paths with PathCol of the same
size, e.g., as shown in Fig. 6(b), the PathCol {O8, O5, O4} of
one path is of the same size as another path whose PathCol is
{O8, O3, O4}. We break ties among these paths by accumulating
the Euclidean distance between the consecutive obstacles along
the path and choosenbest from the path with the shortest distance.
In this way, the distance of the path containing {O8, O5, O4} is
shorter than the path containing {O8, O3, O4}.

The PathCol of the goal nodeng represents the set of obstacles
colliding with the robot and the target object when moving along
the best path from ns to ng , from which we can generate Or,
the sequence of objects to be removed. The objects in Or are
sorted according to the order of corresponding nodes in the
best path. For instance, as shown in Fig. 6(a), we obtain the
sequenceOr = 〈O8, O4, Og〉, which means the robot will try to
manipulateO8 before graspingO4. Furthermore, every object in
Or is unique, which is ensured by the set operation mentioned
above. For an object contained in NodeCol of multiple nodes,
we only store the first one in the path, because if the object was
manipulated successfully, it will be removed from the scene and
will not influence the other nodes. The object removal sequence
R, which includes Or, the object sequence to be removed and
Nr, the retrieval graph node sequence, will be returned as the
task planning result (Line 20).

D. Feasibility Checking of the Object Removal Sequence

After updating the retrieval graph G and obtaining the new
object removal sequence R, the motion planner follows to
check whether objects inOr could be grasped and manipulated
by the robot. We perform feasibility checking for the objects
according to their order inOr (Algorithm 1, Line 15). For each
object Oi ∈ Or, we first check whether Oi could be grasped
by computing inverse kinematics (IK) with the preset grasps
g, which include grasp poses around the object, and then we
perform motion planning to compute collision-free motions for
the robot to reach and manipulate the object. If Oi cannot be
manipulated by the robot without collisions, we compute the

Algorithm 3: UPDATERETRIEVALGRAPH.
Input: new retrieval graph node nnew, retrieval graph G
Output: updated retrieval graph G, object removal
sequenceR = {Or,Nr}
1: for ∀nneighbor ∈ NEIGHBOR(nnew) do
2: S ← nneighbor.PathCol ∪ nnew.NodeCol
3: if |nnew.PathCol| = ∅ or |S| < |nnew.PathCol| then
4: nnew.PathCol← S
5: nnew.BestNeighbor← nneighbor

6: end if
7: end for
8: Qn ← PRIORITYQUEUE(nnew)
9: repeat

10: n← Qn.pop()
11: for ∀nneighbor ∈ NEIGHBOR(n) do
12: S ← n.PathCol ∪ nneighbor.NodeCol
13: if |nneighbor.PathCol| = ∅ or |S| < |nneighbor.PathCol|

then
14: nneighbor.PathCol← S
15: nneighbor.BestNeighbor← n
16: Qn.add(nneighbor)
17: end if
18: end for
19: until Qn is Empty or nneighbor = G.ng

20: R ← EXTRACTOBJREMOVALSEQUENCE(ng)
21: return G,R

grasp pose with the minimum number of collision obstacles and
collect the set of collision obstacles Ocol. Then, we create new
node nnew with Ocol and add nnew to expand G as introduced
in Section IV-C2. After adding the new node, the task planner
calls UPDATERETRIEVALGRAPH (see Algorithm 3) to find the
new best path with the new object removal sequence. We repeat
the feasibility checking and search for new object removal
sequences until no sequence satisfies |Or| ≤ L, i.e., the total
number of objects in Or is no more than L. When the target
object Og is retrieved, the task is accomplished.

We require the path reaching the target with |Or| ≤ L in
the incremental expansion process, because it can prevent the
task planner from obtaining a suboptimal solution to the object
removal order. For example, suppose there is only one path
reaching the target withOr = 〈O1, O2〉when L = 2, and when
computing grasp poses for the robot with O1 and O2, the
robot will collide with O3 and O4, respectively. If we collect
these collision obstacles and directly consider the new sequence
Or = 〈O3, O1, O4, O2〉, we may get a feasible task planning
result by removing four obstacles or the feasibility checking
of O3 and O4 fails again and we need to collect new collision
obstacles intoOr. In this way, the eventual number of obstacles
to be removed would be greater or equal to 4. However, this
solution may be suboptimal because a better path with |Or| = 3
may exist. To avoid missing the optimal solution, we only
consider paths with |Or| ≤ L in each iteration. By increasing L
in the subsequent iterations, our task planner can explore more
new paths that satisfy L and eventually find the optimal result.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

E. Analysis

Theorem IV.1: Our incremental sampling-based TAMP is
probabilistically complete.

Proof: Suppose L ≥ |O|, i.e. when performing sampling-
based motion planning for the target object in its configuration
space C , we allow the target object to collide with other objects
when constructing a roadmap and finding a path to connect xs

and xg . This sampling-based motion planner is probabilistically
complete. The retrieval graph over the roadmap records the
best path from xs to xg with Or, the object sequence to be
removed. Removing objects inOr ensures the robot end-effector
is collision-free when moving along the path to retrieve the
target object in C \ Or. Because we iteratively add new collision
obstacles to Or from motion planning failures, the worst case
is all objects are contained in Or (i.e., removing all obstacles).
Moreover, the node of the retrieval graph contains the minimum
collision obstacle set along the path from xs to xg andOr is an
ordering sequence, the worst case is our sampling-based planner
explore all different retrieval paths with different orders from
xs to xg . Since the Bi-RRT used in robot motion planning is
probabilistic complete [47], given sufficient time, the probability
of retrieving the target object approaches one. �

Theorem IV.2: The solution computed by the greedy algo-
rithm is optimal on the retrieval graph G if there exists a path
from ns to ng with the minimum collision set S�

g .
Proof: For any path 〈ns,n1, . . . ,nt〉 in G starting from

ns, the size of the path collision set is |ns.NodeCol|+∑t
i=1 |ni.NodeCol \ ni−1.NodeCol|. Suppose there exists a

path 〈ns,n1, . . . ,ng〉 in G from ns to ng with the
minimum collision set S�

g , where |S�
g | = |ns.NodeCol|+∑g

i=1 |ni.NodeCol \ ni−1.NodeCol|. By the Lemma A.1,
which is proposed in [4], the size of the path col-
lision set computed by the greedy search algorithm is
no more than |S�

g |, i.e., |ng.PathCol| ≤ |ns.NodeCol|+∑g
i=1 |ni.NodeCol \ ni−1.NodeCol| = |S�

g |. By the Theorem
A.1, which is proposed in [4], since |S�

g | is optimal on G and
|ng.PathCol| ≥ |S�

g |, so |ng.PathCol| = |S�
g |. Thus, the solution

computed by the greedy algorithm is optimal on G. �
Theorem IV.3: Algorithm 2 has O(Ttotal log Ttotal) time com-

plexity.
Proof: Algorithm 2 uses a sampling based method to con-

struct the roadmap. Each sampling iteration generatesT samples
and our incremental algorithm takes at most L iterations, so
the total number of samples is Ttotal = L · T . For each sample,
finding nearest neighbors takes log Ttotal time. Thus, the time
complexity of constructing roadmap is O(Ttotal log Ttotal).

Theorem IV.4: Algorithm 3 has O(|G.N| log |G.N|) time
complexity.

Proof: For finding the best path with the smallest path colli-
sion set to the target object, we adopt the greedy search [4] on the
retrieval graph in Algorithm 3. The greedy search runs in time
O(|G.N|) on the retrieval graph G. We use the candidate nodes
in an ascending order priority queue, which is implemented
as a Fibonacci heap. Extracting the minimum PathCol size
node takes O(log |G.N|) time. Thus, the time complexity is
O(|G.N| log |G.N|). �

Fig. 7. An example scene of occlusion experiment. (a) Front view of the
cluttered environment. Three large objects hide other objects. (b) Another view
from the backend side.

V. EXTENSION FOR COMPLEX TASKS

A. Occlusion and Unobservable Target Pose

Our TAMP algorithm can be extended to handle the realistic
scenario where there exist occlusions between objects and thus
the robot cannot fully observe the entire scene or even does
not know the position of the target object. For instance, as
shown in Fig. 7, there are three large objects at the front of
the clutter, and other objects, including the target object (blue),
are unobservable to the robot. Thanks to the incremental strategy
of our algorithm, it can be conveniently extended to handle the
objects that were not observable to the robot in the beginning and
become observable after some other objects are removed. The
extended algorithm is shown in Algorithm 4 and Fig. 8 illustrates
how it works for the scenario of Fig. 7. In particular, Fig. 8(a)
shows an initial setup where the robot can only observe O1, O2,
andO3, while its view of other objects is obstructed by obstacles
between them and the robot. For example, Og is occluded by O6

and O6 is occluded by O2. If the target object is unobservable
to the robot, we first find an object farthest from the start point
and assume a temporal node xtemp behind this object (Line 3–5).
We denote xtemp as the goal node xg and execute our algorithm
(Algorithm 1, Line 9). As shown in Fig. 8(b)–(d), suppose that
we find a path from the start nodens to the goal nodeng with the
obstacle O2, and O2 can be successfully removed by the robot.
After removing O2, we can find a new object O6 behind O2.
We then add O6 to the set of objects O (Line 12–14) and set a
new temporal node as the goal node to execute our algorithm. If
the target object is observable, we set the target object pose as
the goal node [Line 6, Fig. 8(e)] and compute a retrieval plan for
the target object. We repeat this procedure until the target object
is retrieved.

B. Mobile Manipulation

Our method can also be extended to handle the high-
dimensional planning problem of using a mobile manipulator.
Mobility can increase the robot’s manipulation capability by
allowing it to reach an object from different directions. For
instance, suppose a set of objects are placed on a table and the
target is in the middle of the group, as shown in Fig. 9. If the
base of PR2 robot is fixed, it can only remove objects from one
side and have to remove at least two obstacles. If the base of PR2

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 175

Fig. 8. Example of occlusion experiment. (a) The initial setup where only O1, O2, and O3 can be observed and other objects are hidden, including the target
object. (b) We choose a node xtemp behind the farthest object, and create a retrieval graph node contain xtemp and set it as the temporal goal node ng . After
performing our TAMP algorithm, we can find paths to ng . (c)–(d) If new objects are found, we add them to the object set and update ng , then continue to perform
our TAMP algorithm with the new ng . (e) If the target object is found, we replace the temporal node with the target object pose and set it as the goal node ng , then
continue to perform our TAMP algorithm with the new ng .

Algorithm 4: OCCLUSIONPLANNER.
Input: target object start point xs, objects set O, target
object Og , robot rob, grasps g

Output: object removal sequenceR, robot motion set Π
1: R,Π← ∅, ∅
2: while Og is not retrieved do
3: if Og is not detected then
4: compute xtemp based on the farthest reachable

object from O
5: xg = xtemp

6: else
7: xg = Og.pose
8: end if
9: R′,Π′ ← PLANNINGWITHINTERLEAVEDUPDATES(

10: xs,xg,O, Og, rob,g)
11: R ← R∪R′, Π← Π ∪Π′

12: if find new objects Onew then
13: O ← O ∪Onew

14: end if
15: end while
16: returnR,Π

can move, it can reach the target from any direction and choose
a path with a smaller number of objects to be removed.

For handling mobile manipulation, we enlarge the workspace
to cover the free space around the cluttered scene and generate
samples in the corresponding configuration space. All samples
outside the cluttered region are collision-free and can be con-
nected to the start point with collision-free paths. In this way,
the paths from all directions to the target can be investigated.

C. PDDL Planning

Our task planner can be incorporated with the PDDLStream
planning [32] to complete more complex tasks. In particular,
the candidate object removal sequence generated by our task
planner could help the general PDDLStream planning focus on
a small set of objects in the cluttered scene and thus significantly
improve its performance in the special task of target retrieval.
PDDLStream is an extension of the standard AI planning PDDL

Fig. 9. Example scene of mobile manipulation with the PR2 robot with one
arm locked. (a) 20 objects located on the table and the target object in the center.
(b) Bird’s-eye view of the environment. The target object can be retrieved from
all directions with different number of obstacles to be removed. (c) If the robot
tries to retrieve the target object without moving the base, it needs to remove at
least two obstacles before retrieving the target object. (d) If the robot can move
its base, it can move to another side of the clutter and only remove one obstacle.

(Planning Domain Definition Language) [48], which incorpo-
rates sampling procedures (called streams) to combine task
planning and motion planning. PDDLStream plans the task by
iteratively increasing the maximum number of subtasks. In each
iteration, it finds an optimistic plan and evaluates all stream in-
stances. For example, for the target retrieval task, PDDLStream
tries to pick and manipulate the target object directly at first. If the
direct manipulation fails, it will increase the maximum number
of subtasks and try an alternative task plan to remove an obstacle
and then manipulate the target. If the task plan still fails, it will
continue to increase the subtask number and try new task plans
with more obstacles being removed. For each subtask, PDDL-
Stream evaluates stream instances with all removable obstacles.
For example, for the subtask “pick an obstacle,” the planner will

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

Fig. 10. Object is placed on top of two objects in front of the target object.
If the robot wants to remove front objects, it needs to remove the top object in
advance. (a) Experiment with 4 objects. (b) Experiment with 8 objects.

try to pick all obstacles to find a feasible one by sampling grasp
pose and performing manipulation motion with each object. As
the number of subtask increases, each subtask needs to evaluate
all stream instances and thus the computational complexity
increases rapidly when the number of removable objects is large.

In this extension, we incorporate our task planner with PDDL-
Stream by replacing the routine of grasp planning and robot
motion planning with PDDLStream planning. This extension
has two advantages. First, our planner can help the general
PDDLStream focus on a small range of objects in the cluttered
scene. Second, PDDLStream planning can enhance our algo-
rithm capability to handle a more complex environment, such as
an object is placed on top of other objects, as shown in Fig. 10. In
this experiment, we use a predicate (Clear ?o) to describe
whether there is an object placed on top of the object o. If no,
(Clear ?o) is true, otherwise false. Suppose the robot wants
to remove objects located in front of the target object. Then, it
needs to reason out a plan that removes the object placed on
top of the front objects and sets the predicate (Clear ?o) of
these objects to be true. Only after such a plan is executed can
the robot remove these front objects. The pick and place action
schemas used in our experiment are as follows:
(:action pick
:parameters (?o ?p ?g ?q)
:precondition (and (Clear ?o) (At-

Pose ?o ?p)
(HandEmpty) (AtConf ?q))

:effect (and (AtGrasp ?o ?g) (not (At-
Pose ?o ?p))

(not (Clear ?o)) (not (Han-
dEmpty)))
)
(:action place
:parameters (?o1 ?o2 ?p ?g ?q)
:precondition (and (not (Clear ?o1))

(Clear ?o2)
(AtGrasp ?o1 ?g) (AtConf ?q)

:effect (and (AtPose ?o1 ?p) (not (At-
Grasp ?o1 ?g))

(on ?o1 ?o2) (Clear ?o1)
(not (Clear ?o2))

(HandEmpty))
)

Fig. 11. Retrieving a target object (blue) from a cluttered scene with many
obstacles. (a) Experiment with UR10 robot and 16 objects. (b) Experiment with
UR10 robot and 20 objects.

Here, an action consists of a set of parameters :param-
eters, the conjunctive boolean preconditions :precondi-
tion that must be satisfied for the action to be executed, and the
conjunctive Boolean effects:effect that describe the changes
of the state after executing the action. and, or, not are
Boolean operators. Instead of performing PDDLStream with all
objects, we first perform our task planner to compute candidate
object removal sequences. Then, we treat the removal objects as
movable objects and other objects as fixed obstacles and perform
PDDLStream planning. In this way, we can significantly reduce
the search space and consequently the computational complexity
by combining our task planner specific for the target retrievial
with and the general PDDLStream.

VI. EXPERIMENTS

In this section, we present some details of the implementation,
experiment environments, and the performance of our algorithm
on different tasks.

A. Implementation

We have implemented our algorithm on a PC running Linux.
The performance is measured on a PC with a 2.9 GHz Intel
Core i7 CPU and 16 GB memory. We use Bi-directional RRT
(Bi-RRT) to compute the motion planning for the robot. In our
algorithm, we set T = 1000 and Traise = 100. When comparing
different planners, we limit the maximum planning time to 1
min and consider a planning instance unsuccessful if the time is
running out. The target object only moves when the robot’s end-
effector grasps it, so the radius of the footprint circle of the target
object rb in our simulations is set according to the end-effector
size and the target object size rb = rg + rf , where rg is the
radius of the target object and rf is the thickness of the gripper
finger. The radius of the footprint circle with different grippers
is given in Appendix A. We build the simulation environment
and compute collision detection using PyBullet [49].

B. Experiments With Our Planner

We test our planner with multiple scenarios with different
numbers (12, 16, 20, respectively) of objects to investigate the
planning performance. As shown in Figs. 1 and 11, we use
cylinders to represent the objects, where the radius and height
of cylinder are randomly sampled between [3.5 cm, 4.0 cm]

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 177

TABLE II
PLANNING RESULT OF OCCLUSION EXPERIMENTS. WE USE A 6-DOF UR10

ROBOT TO TEST OUR ALGORITHM

Fig. 12. Comparison between different initial values of L with UR10 robot.
(a) The planning time. (b) The number of removed objects (including the target
object).

and [24 cm, 29 cm], respectively. Objects are randomly and
uniformly placed on the table without any collisions. The size
of the cabinet changes from 0.9 m × 0.6 m × 0.5 m to 1.2 m ×
0.7 m × 0.5 m for three scenarios. We use a Universal Robot
10 (UR10) with 6 DoFs to accomplish the task and the parallel
gripper set on UR10 is a DH AG-95 gripper. The robot cannot
reach the target without removing the blocked objects. For each
task, we measure the number of removed objects, the total
planning time, the number of iterations, and the success rate. We
generate 20 instances of object distribution and run 20 times for
each instance to collect quantitative performance measurements
that are summarized in Table I.

We found the initial value of the exploration limitLwill affect
the algorithm performance. Fig. 12 shows the comparison be-
tween differentL values. Among the three ways to set the initial
values (L = 1, L = |ng.NodeCol| and L = |O|), the planner
starting with L = 1 can compute a path with the fewest average
number of collision obstacles because it uses more samples with
fewer collision obstacles to explore the scene. However, this also
increases the planning time due to the more iterations before
finding a feasible path. For the choice L = |ng.NodeCol|, we
use the size of NodeCol of the goal node as the initial value.
This requires reachability checking for the target object before
planning, i.e., computing the minimum number of collision
obstacles when the robot directly grasps the target object, which
is a tighter lower bound of the number of objects eventually
removed than L = 1. Thus, starting from L = |ng.NodeCol|,
we can reduce iteration number and save the planning time,
but the average number of collision obstacles to be removed is
larger than L = 1 because the regions reachable with a small
number of collision obstacles are not sufficiently sampled. The
choiceL = |O|means all paths to the goal node can be treated as
valid, and we plan a motion without considering obstacles. This
method does not have the incremental iteration step. Instead, it
directly finds a path to the goal and then checks the feasibility

Fig. 13. Number of nodes in the roadmapM and the retrieval graph G. We
show the changes of node numbers and the ratio between the numbers of M
nodes and G nodes during sampling iterations. This experiment uses a UR10
robot to retrieve the target from 12 objects.

Fig. 14. (a) Ratios between the numbers ofM nodes and G nodes for different
experiments during sampling iterations. (b) The average number of samples and
planning time for experiments with different number of objects. The x-axis is
the number of objects in the cluttered scene and the number of objects that need
to be removed to retrieve the target object.

of the collision obstacles along the path. This method takes the
least time to find the path to the target object in most cases, but
it may take more time to replan in some cases due to unexpected
robot-obstacle collisions. This method removes more objects
than the other two choices.

Our task planner uses the retrieval graphG to accelerate update
efficiency by clustering the roadmap nodes and reducing the
node number. We show the benefits of using the retrieval graph
by comparing node numbers ofM and G during the iterations
in Fig. 13, where the experiment is to retrieve the target from 12
objects using a UR10 robot. We demonstrate the ratio of the node
number ofM to the node number of G during the iterations. We
can find that the ratio goes up quickly in the early stage, which
means that the collision regions of the target object can be repre-
sented with fewer retrieval graph nodes. After generating more
samples and performing feasibility checking, we need more
retrieval graph nodes to collect the robot’s grasp and motion
planning failures. We further demonstrate the ratios in multiple
scenarios with different numbers of objects in Fig. 14(a). We
find that the complex scenario with a large number of ob-
jects needs more retrieval graph nodes than simpler scenarios.
Fig. 14(b) also shows the number of samples generated to find
the object retrieval sequence and the planning times in different
situations.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

TABLE III
PLANNING RESULT OF MOBILE MANIPULATION TASK. WE USE A PR2 ROBOT

AND TEST OUR ALGORITHM WITH DIFFERENT EXPLORATION LIMIT VALUES L

C. Occlusion and Unobservable Target Pose

In this experiment, we test our occlusion planner with three
scenarios that include 12, 16, and 20 objects, respectively. Each
object is occluded by the object in front of it and the target object
pose is unobservable to the robot. We use a 6-DOF UR10 robot
arm with a suction gripper to manipulate objects and the results
are summarized in Table II. In each iteration, our planner finds
paths that satisfy the exploration limit and then tries to remove
objects along the path to find new objects that were occluded.
The procedure of trying to grasp and manipulate objects that are
not in the final object removal sequence would take extra time
cost, and thus the occlusion planner is slower than our basic
TAMP algorithm working in a known scene.

D. Experiment With Mobile Manipulation

In this experiment, we test our planner with the mobile manip-
ulation task, with the results summarized in Table III. As shown
in Fig. 9(a), we randomly place 20 objects on the table, including
the target object, and use a PR2 robot to retrieve the target object.
We initially put the robot on one side of the table, lock its right
arm and only allow the left arm to manipulate objects. The PR2
robot can manipulate objects from any direction around the table.
If the robot tries to retrieve the target from the initial position,
it needs to remove at least two objects, as shown in Fig. 9(b)
and (c). If the robot relocates to another side of the table, it can
retrieve the target object by removing only one object, as shown
in Fig. 9(d).

E. Experiment With PDDLStream

In this experiment, we incorporate our planner with PDDL-
Stream planning to complete complex tasks. As shown in Fig. 10,
an object is placed on top of two objects located in front of the
target object. We use a UR10 robot and test in two scenarios
that contain 4 and 8 objects, respectively. The additional objects
in Fig. 10(b) other than those in Fig. 10(a) shall not affect the
robot’s final action sequence. The optimal manipulation strategy
for both scenarios is to remove the object placed on top of
two objects and then remove one of the two objects in front
of the target. Compared with the original PDDLStream method,
our planner first computes candidate object removal sequences
and then uses them as input of PDDLStream, which helps
PDDLStream focus on a small range of objects even though the
number of objects in Fig. 10(b) is more than Fig. 10(a). Thus,
the planning time of our method increases more slowly than the
original PDDLStream when the number of objects in the scene
increases, with the results summarized in Table IV.

TABLE IV
COMPARISON RESULT WITH PDDLSTREAM. WE TEST TWO SCENES WITH

DIFFERENT NUMBERS OF OBJECTS AND MEASURE

AVERAGE PLANNING TIME

Fig. 15. Comparison with the state-of-the-art algorithm. (a) Average time. (b)
The number of removed objects (including the target object).

F. Comparisons

We compare our method with the state-of-the-art method [3].
The method proposed in [3] constructed a traversability graph to
represent the movable paths of objects in the cluttered environ-
ment. They construct the graph by choosing the largest object
and then move the largest object between all objects to see if
there is a collision-free path between two object poses. If the
path exists, the planner connects two related objects and adds an
edge to the graph. After preconstructing the graph, they search
in the graph to find a feasible path to the target. Compared to
this method, we do not need to handle all objects in the scenario
and check collision detection between all object pairs, which is a
highly time-consuming process, especially when the number of
objects is large. We compare our planner with the experiments
of Case I in [3]. We set benchmark scenes with the same object
numbers and a robot arm with the same degree of freedom. We
use a 6-DOF robot and test on three scenes with 12, 16, 20
objects, respectively. We set the initial value of the exploration
limit L = 1 and the results are shown in Fig. 15. Our planner
takes shorter planning time than [3] with a time reduction of
24.6%, 10.9%, and 21.3% on three scenes respectively. Our
planner also manipulates fewer objects than [3]. In particular,
the average numbers of removed objects in the three benchmark
scenes are reduced by 16.1%, 3%, and 8.8%, respectively. Our
algorithm also provides a higher success rate because our planner
can quickly collect failure from motion planning and feedback
it to the task planner.

Furthermore, to compare the performance of our method
with [3] in handling a large number of objects in cluttered
scenes, we test on the scene with 100 objects. In this task, the
robot needs to remove at least 10 objects to retrieve the target
object. Table V shows the results. Our method takes a longer
task planning time than [3] since the cost of constructing the
roadmap by sampling and updating the retrieval graph in our
method is more than the cost of constructing the traversability

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 179

TABLE V
COMPARISON BETWEEN OUR METHOD (L = 1) AND THE STATE-OF-THE-ART

METHOD [3] IN HANDLING THE LARGE NUMBER OF OBJECTS. WE USE A

6-DOF UR10 ROBOT AND |O| = 100.

We test on the scene with the minimum |Or | = 10. We run each algorithm 10
times and report the mean (std) of the performance.

graph and search paths in [3]. However, [3] takes a longer motion
planning time than our method. The motion planning in [3]
is to check whether the objects in the searched path could be
manipulated by the robot. If an object cannot be manipulated
due to robot-obstacle collisions, the edge that connects to the
object in the path will be deleted from the graph and then replan
a new path over the updated graph. However, replanning does
not consider important information like which specific obstacle
blocks robot’s motion. The planner needs to replan multiple
times to find the successful path. Thus, the number of planning
sequences of [3] is larger than our method and they takes a lot of
time to perform motion planning to check whether sequences are
feasible. Our planner uses the retrieval graph to collect collision
feedback and efficiently replan from failures, so we have fewer
replanning times, shorter motion planning time, and manipulates
fewer objects than [3].

To investigate the quality of our result, we compare our
method with a brute-force search method. The brute-force search
object retrieval will check all the possible combinations of
removing obstacles, including different subsets of obstacles
and in different orders. Although very time-consuming, it can
provide the optimal solution for object retrieval. In this ex-
periment, we use a 6-DOF UR10 robot to retrieve the target
object from three scenes all with 16 objects. But these scenes
have different numbers of minimum objects to be removed
for successful retrieval (2, 3, 4, respectively). For our method,
since it is randomized, we run it 20 times for each scene to
collect performance measurements, and the mean and standard
variance for the numbers of retrieval objects and planning time
are shown in Table VI. We can see that our result is close to the
optimal solution in terms of the number of retrieval objects, but
our planning time is significantly shorter than the brute-force
search.

G. Implementation With Physical Robot

We validate our planner with a real-world example using a
physical robot. As shown in Fig. 1(b), we test our planner with a
7-DoF Franka Panda robot arm. We place 12 bottles on a shelf,
and the positions of bottles are the same as distribution in the
simulation. In order to retrieve the target bottle, the robot has to
remove two bottles that block robot manipulation motion.

TABLE VI
COMPARISON BETWEEN OUR METHOD (L = 1) AND THE BRUTE-FORCE

SEARCH METHOD IN BOTH THE NUMBER OF OBJECTS TO BE REMOVED

AND THE TIME REQUIRED

We use a 6-DOF UR10 robot and |O| = 16. We test on three scenes with the minimum
|Or | = 2, 3, and 4. For each scene, we run each algorithm 20 times and report the
mean (std) of the performance.

Fig. 16. Snapshot of the target object retrieval process with non-prehensile
and prehensile actions. (a), (b) Pushing the bottle to a collision-free position
using non-prehensile action. (c) Picking the bottle in front of the target object
as there does not have valid goal positions for pushing. (d) Retrieving the target
object using prehensile manipulation.

Fig. 17. Radius of the bounding cylinder of the target object with different
grippers. (a) For the gripper with a large base, we set half of the base length
rbase as the radius of bounding cylinder rb. (b) For the gripper without a large
base, rb is equal to the radius of the target rg plus finger thickness rf .

We integrate our algorithm with a nonprehensile action (push-
ing) to further improve operational efficiency, as shown in
Fig. 16. After computing the sequence of objects to be removed,
we collect collision-free sampling poses that locate around
removal objects and have no collision with the swept volume
of the robot motions. If these poses can be reached with the
nonprehensile action, we can use this non-prehensile action to

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

180 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

replace pick-and-place action. Please watch the supplementary
video for the manipulation process.

VII. CONCLUSION

We present a sampling-based TAMP solution to retrieve the
target object occluded by many other objects. Our method
incrementally constructs a roadmap and a retrieval graph that
represents the manipulation collision states. Our solution can
efficiently determine the object removal order and plan a series
of collision-free manipulation motions for the robot. Our algo-
rithm can handle both known and occlusion scenes and mobile
manipulation. We demonstrated our experimental results both in
simulation and physical environments. Compared to the state-of-
the-art, we observed up to 24.6% performance improvement in
terms of TAMP time. Moreover, our method is probabilistically
complete.

Our algorithm has a few limitations. First, we assume the
objects are near-cylindrical. We use cylinders to represent these
objects and prespecified grasp poses for these models. Second,
we assume the gripper could grasp the object firmly. For future
work, we would like to extend our algorithm to handle objects
with various geometric shapes. It is also challenging and in-
teresting to handle dynamic environments. Moreover, we would
like to investigate parallel and GPU-based algorithms to achieve
real-time performance.

APPENDIX A

In this appendix, we copy some important Lemma and theo-
rem as well as their proofs in [4] using our terminology to make
our paper self-contained.

Lemma A.1: LetP = 〈n0,n1, . . . ,nt〉 be any path in G start-
ing at n0 = ns. Then the size of the subset at nt computed by
the greedy algorithm is no more than

|n0.NodeCol|+
t∑

i=1

|ni.NodeCol \ ni−1.NodeCol|. (4)

Proof: Let S0, . . . , St denote PathCol obtained at
n0, . . . ,nt by greedy search. Define the partial sums
k0 = |n0.NodeCol|, k1 = k0 + |n1.NodeCol \ n0.NodeCol
|, . . . , kt = kt−1 + |nt.NodeCol \ nt−1.NodeCol|. We can
prove that |Si| ≤ ki by induction on i. The base case with i = 0
is true by definition. Now consider the subset Si−1 reached
at ni−1 and make the inductive assumption |Si−1| ≤ ki−1.
Because Si−1 also contains ni−1.NodeCol, the search would
add precisely |ni.NodeCol \ ni−1.NodeCol| elements to Si−1
if it took the candidate edge from ni−1 to ni. The greedy
search has the option of traversing the edge ni−1 → ni, and
will not choose an edge into ni that produces a larger subset.
So, we have Si ≤ |Si−1|+ |ni.NodeCol \ ni−1.NodeCol| ≤
ki−1 + |ni.NodeCol \ ni−1.NodeCol| = ki as desired. By
induction this inequality holds for all i. �

Theorem A.1: The solution computed by the greedy algorithm
is optimal on the retrieval graph G if there exists a path P from
ns to nt with PathCol cover S� such that each obstacle in S�

enters into P at most once. Here, “entering” means that for any

i ∈ S�, the set of vertices along P for which i lies in their cover
form a connected subsequence.

Proof: Number the vertices of such a path P = 〈n0, . . . ,nt〉
on the retrieval graph G. The size of the covers of each
prefix of P form a nondecreasing sequence 〈k0, . . . , kt〉
for which k0 = |ns.NodeCol|, where ns = n0, and kt =
|S�|. The single entry assumption shows that ki+1 − ki =
|ni+1.NodeCol \ ni.NodeCol|. Now consider theSt obtained at
nt by greedy search. By the Lemma A.1, |St| ≤ |n0.NodeCol|+∑t

i=1 |ni.NodeCol \ ni−1.NodeCol| = kt = |S�|. Since |S�|
is optimal, St ≥ |S�|, and hence |St| = |S�| as desired. �

APPENDIX B

In this appendix, we give a brief introduction of the radius
of the bounding circle for different types of grippers. As shown
in Fig. 17, some grippers like Franka Panda have a large base,
which affects object movements when the object is grasped by
the gripper. Thus, we set half of the base length rbase as the radius
of bounding circle rb for this case. For the gripper without a large
base, the radius of the target object is rb = rg + rf , where rg
is the radius of the target object and rf is the thickness of the
gripper finger.

REFERENCES

[1] M. Geoffrey, “Thirsty? there’s a robot for that,” [Online]. Available: https:
//www.stuff.co.nz/technology/8741807/Thirsty-Theres-a-robot-for-that

[2] C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim, “Fast and resilient
manipulation planning for target retrieval in clutter,” in Proc. IEEE Int.
Conf. Robot. Automat., 2020, pp. 3777–3783.

[3] C. Nam, S. H. Cheong, J. Lee, D. H. Kim, and C. Kim, “Fast and
resilient manipulation planning for object retrieval in cluttered and con-
fined environments,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1539–1552,
Oct. 2021.

[4] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” Int. J. Robot. Res., vol. 33, no. 1, pp. 5–17,
2014.

[5] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
Effective Framework for Path Planning Amidst Movable Obstacles,” in
Algorithmic Foundation of Robotics VII. Berlin, Germany: Springer, 2008,
pp. 87–102.

[6] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: A probabilistically complete
approach,” in Algorithmic Foundation of Robotics VIII. Berlin, Germany:
Springer, 2009, pp. 599–614.

[7] G. Wilfong, “Motion planning in the presence of movable obstacles,” Ann.
Math. Artif. Intell., vol. 3, no. 1, pp. 131–150, 1991.

[8] E. D. Demaine, M. L. Demaine, and J. O’Rourke, “Pushpush and push-1
are np-hard in 2D,” in Proc. Annu. Can. Conf. Comput. Geom., 2000,
pp. 211–219.

[9] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proc. IEEE Int. Conf. Robot.
Automat., 2007, pp. 3327–3332.

[10] P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” Sandia National Labs., Albuquerque, NM (USA), Tech. Rep.
SAND-90-2383C, 1990.

[11] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles: Real-
time reasoning in complex environments,” Int. J. Humanoid Robot., vol. 2,
no. 4, pp. 479–503, 2005.

[12] M. Stilman and J. Kuffner, “Planning among movable obstacles with arti-
ficial constraints,” Int. J. Robot. Res., vol. 27, no. 11–12, pp. 1295–1307,
2008.

[13] O. Ben-Shahar and E. Rivlin, “To push or not to push: On the rearrangement
of movable objects by a mobile robot,” IEEE Trans. Syst., Man, Cybern.,
Part B. (Cybern.), vol. 28, no. 5, pp. 667–679, Oct. 1998.

[14] M. R. Dogar and S.S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” Auton. Robots, vol. 33, no. 3,
pp. 217–236, 2012.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

https://www.stuff.co.nz/technology/8741807/Thirsty-Theres-a-robot-for-that
https://www.stuff.co.nz/technology/8741807/Thirsty-Theres-a-robot-for-that

TIAN et al.: SAMPLING-BASED PLANNING FOR RETRIEVING NEAR-CYLINDRICAL OBJECTS IN CLUTTERED SCENES 181

[15] J. A. Haustein, J. King, S.S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in Proc. IEEE Int. Conf. Robot. Automat., 2015,
pp. 3075–3082.

[16] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proc. IEEE Int. Conf. Robot. Automat.,
2014, pp. 639–646.

[17] M. Moll et al., “Randomized physics-based motion planning for grasping
in cluttered and uncertain environments,” IEEE Robot. Automat. Lett.,
vol. 3, no. 2, pp. 712–719, Apr. 2018.

[18] R. Wang, Y. Miao, and K. E. Bekris, “Efficient and high-quality prehensile
rearrangement in cluttered and confined spaces,” in Proc. IEEE Int. Conf.
Robot. Automat., 2022, pp. 1968–1975.

[19] R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris, “Uniform
object rearrangement: From complete monotone primitives to efficient
non-monotone informed search,” in Proc. IEEE Int. Conf. Robot. Automat.,
2021, pp. 6621–6627.

[20] A. H. Qureshi, A. Mousavian, C. Paxton, M. Yip, and D. Fox, “NeRP:
Neural rearrangement planning for unknown objects,” in Proc. Robot.:
SCi. Syst., 2021.

[21] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle rearrange-
ment for object manipulation tasks in cluttered environments,” in Proc.
IEEE Int. Conf. Robot. Automat., 2019, pp. 183–189.

[22] J. Ahn, J. Lee, S. H. Cheong, C. Kim, and C. Nam, “An integrated approach
for determining objects to be relocated and their goal positions inside
clutter for object retrieval,” in Proc. IEEE Int. Conf. Robot. Automat.,
2021, pp. 6408–6414.

[23] R. Papallas and M. R. Dogar, “Non-prehensile manipulation in clutter
with human-in-the-loop,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 6723–6729.

[24] J. E. King, V. Ranganeni, and S.S. Srinivasa, “Unobservable monte carlo
planning for nonprehensile rearrangement tasks,” in Proc. IEEE Int. Conf.
Robot. Automat., 2017, pp. 4681–4688.

[25] J. Lee, C. Nam, J. Park, and C. Kim, “Tree search-based task and motion
planning with prehensile and non-prehensile manipulation for obstacle
rearrangement in clutter,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 8516–8522.

[26] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for
object placement on cluttered table surfaces,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2011, pp. 4627–4632.

[27] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in Proc. IEEE Int.
Conf. Robot. Automat., 2021, pp. 4694–4701.

[28] W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, and K. Hang, “Rearrangement
with nonprehensile manipulation using deep reinforcement learning,” in
Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 270–277.

[29] M. S. Saleem and M. Likhachev, “Planning with selective physics-based
simulation for manipulation among movable objects,” in Proc. IEEE Int.
Conf. Robot. Automat., 2020, pp. 6752–6758.

[30] F. Paus, T. Huang, and T. Asfour, “Predicting pushing action effects on
spatial object relations by learning internal prediction models,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 10584–10590.

[31] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An Efficient
Heuristic for Task and Motion Planning,” in Algorithmic Foundations of
Robotics XI. Berlin, Germany: Springer, 2015, pp. 179–195.

[32] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream: Inte-
grating symbolic planners and blackbox samplers via optimistic adaptive
planning,” in Proc. Int. Conf. Automated Plan. Scheduling, 2020, vol. 30,
pp. 440–448.

[33] F. Lagriffoul and B. Andres, “Combining task and motion planning: A
culprit detection problem,” Int. J. Robot. Res., vol. 35, no. 8, pp. 890–927,
2016.

[34] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric back-
tracking,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 957–964.

[35] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karls-
son, “Efficiently combining task and motion planning using geomet-
ric constraints,” Int. J. Robot. Res., vol. 33, no. 14, pp. 1726–1747,
2014.

[36] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards planning
human-robot interactive manipulation tasks: Task dependent and human
oriented autonomous selection of grasp and placement,” in Proc. 4th IEEE
RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2012, pp. 1371–
1376.

[37] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards combining
HTN planning and geometric task planning,” in Proc. RSS Workshop
Combined Robot Motion Plan. AI Plan. Practical Appl., 2013.

[38] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Proc. Int. Joint Conf.
Artif. Intell., 2015, pp. 1930–1936.

[39] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,” in Proc.
Robot.: SCi. Syst., 2018.

[40] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Ac-
tive model learning and diverse action sampling for task and motion
planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 4107–4114.

[41] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to guide
task and motion planning using score-space representation,” Int. J. Robot.
Res., vol. 38, no. 7, pp. 793–812, 2019.

[42] R. Chitnis et al., “Guided search for task and motion plans using learned
heuristics,” in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 447–454.

[43] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki,
“Learning feasibility for task and motion planning in tabletop envi-
ronments,” IEEE Robot. Automat. Lett., vol. 4, no. 2, pp. 1255–1262,
Apr. 2019.

[44] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics:
Learning feasibility of mixed-integer programs for manipulation plan-
ning,” in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 9563–9569.

[45] K. K. Hauser, “Minimum constraint displacement motion planning,” in
Proc. Robot.: Sci. Syst., 2013, vol. 6, p. 2.

[46] A. Krontiris and K. Bekris, “Computational tradeoffs of search methods
for minimum constraint removal paths,” in Proc. 8th Annu. Symp. Combi-
natorial Search, 2015.

[47] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proc. ICRA. Millennium Conf. IEEE Int.
Conf. Robot. Automat. Symposia Proc. (Cat. No 00CH37065), 2000, vol. 2,
pp. 995–1001.

[48] D. McDermott et al., “PDDL-the planning domain definition language,”
Yale Center Comput. Vis. Contro, Tech. Rep. CVC TR-98-003/DCS TR-
1165, 1998.

[49] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation
for games, robotics and machine learning,” 2016.

Hao Tian received the Ph.D. degree from the School
of Software Engineering, East China Normal Univer-
sity, Shanghai, China, in 2020.

He is currently a Post-doc with the Centre for
Garment Production Limited, Hong Kong, and the
Department of Computer Science, University of Hong
Kong. His research interests are task and motion
planning and robotic manipulation.

Chaoyang Song (Senior Member, IEEE) received the
B.Eng. degree in mechanical engineering from Tongji
University, Shanghai, China, in 2009, and the Ph.D.
degree in mechanism and robotics from Nanyang
Technological University, Singapore, in 2014.

From March 2013 to November 2015, he was a
Postdoctoral Research Fellow with the Massachusetts
Institute of Technology, Cambridge, MA, USA, and
the Singapore University of Technology and De-
sign, Singapore. Then, he was a Lecturer (Assistant
Professor) with the Department of Mechanical and

Aerospace Engineering, Monash University, Clayton VIC, Australia. He is
currently an Assistant Professor with the Department of Mechanical and Energy
Engineering and the Institute of Robotics, Southern University of Science and
Technology, Shenzhen, China. His research interest includes the design science
of bionic robotics and robot learning.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 1, FEBRUARY 2023

Changbo Wang received the Ph.D. degree in com-
puter application technology from the State Key
Laboratory of CAD and CG, Zhejiang University,
Hangzhou, China, in 2006.

He was a Visiting Scholar with the State University
of New York, Stony Brook from 2009 to 2010. He is
currently a Professor with the School of Computer
Science and Technology, East China Normal Univer-
sity, Shanghai, China. His main research interests in-
clude computer graphics, information visualization,
and virtual reality.

Xinyu Zhang received the B.S. and M.S. de-
grees in material science from Zhejiang University,
Hangzhou, China, in 1997, 2000, and the Ph.D. de-
gree in computer science from Zhejiang University,
Hangzhou, China, in 2004.

He is currently a Professor with the School of
Software Engineering, East China Normal University,
Shanghai, China. From 2012 to 2013, he was a Re-
search Scientist of computer science and engineering
with the University of North Carolina, Chapel Hill,
NC, USA He was a Research Professor (2008–2012),

a Fulltime Lecturer (2007–2008) and a Postdoctoral Research Fellow (2005–
2007) with the Department of Computer Science, Ewha Womans University,
South Korea. His research interests include robotics, virtual reality, computer
graphics, and geometric modeling.

Jia Pan (Senior Member, IEEE) received the Ph.D.
degree in computer science from the University of
North Carolina, Chapel Hill, NC, USA, in 2013.

He is currently an Associate Professor with the
Department of Computer Science, University of Hong
Kong, Hong Kong. He is also a member of the Centre
for Garment Production Limited, Hong Kong. His
research interests are robotics and artificial intelli-
gence as applied to autonomous systems, particularly
for navigation and manipulation in challenging tasks
such as effective movement in dense human crowds

and manipulating deformable objects for garment automation.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:48:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

