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TacGNN: Learning Tactile-Based In-Hand
Manipulation With a Blind Robot Using
Hierarchical Graph Neural Network

Linhan Yang ', Bidan Huang“”, Qingbiao Li

Abstract—In this letter, we propose a novel framework for
tactile-based dexterous manipulation learning with a blind anthro-
pomorphic robotic hand, i.e. without visual sensing. First, object-
related states were extracted from the raw tactile signals by a graph-
based perception model - TacGNN. The resulting tactile features
were then utilized in the policy learning of an in-hand manipulation
task in the second stage. This method was examined by a Baoding
ball task - simultaneously manipulating two spheres around each
other by 180 degrees in hand. We conducted experiments on object
states prediction and in-hand manipulation using a reinforcement
learning algorithm (PPO). Results show that TacGNN is effective in
predicting object-related states during manipulation by decreasing
the RMSE of prediction to 0.096 cm comparing to other methods,
such as MLP, CNN, and GCN. Finally, the robot hand could finish
an in-hand manipulation task solely relying on the robotic own
perception - tactile sensing and proprioception. In addition, our
methods are tested on three tasks with different difficulty levels
and transferred to the real robot without further training.

Index Terms—Dexterous manipulation, force and tactile sensing,
representation learning, reinforcement learning.

1. INTRODUCTION

NABLING human-level manipulation in robots has always
been a roboticist’s dream [1]. The human hand is unpar-
alleled in its ability to perform dexterous object manipulation.
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While the outstanding capabilities of the human hand may be
largely attributed to the many degrees of freedom afforded by its
highly evolved anatomy, the availability of high definition tactile
feedback is equally vital. Tasks such as grasping, in-hand manip-
ulation, and finger gaiting cannot be efficiently achieved without
tactile feedback, since the in-hand object state is derived from
contact area distribution while the breaking and re-establishing
of contacts signal key transitional events in the process of
manipulation [2]. Understandably, achieving human-like object
manipulation in robotic hands is a grand challenge.

Unlike humans, robotic manipulation has long relied on vision
to interpret the interactions between the object and the hand.
Robotic vision systems typically involve precise calibration,
multiple cameras, complicated algorithms, or expensive motion
capture systems [3], [4], [5]. Unfortunately, vision is not a direct
observation of force and thus cannot provide the contact infor-
mation needed for dexterous manipulation. Therefore, though
vision-based methods [3] have made commendable progress in
recent years, manipulation remains an open challenge as the use
of tactile information has not yet been fully explored.

One major obstacle in the integration of tactile signals for
manipulation is the difficulty in developing an analytical model
that captures the relationship between time-variant tactile sensor
readings and hand motion. Recently, learning-based approaches
have been explored to directly learn from experience or demon-
strations to achieve dexterous manipulation [5], [6]. Unlike
other sensing modalities such as force/torque sensing, where the
signals can simply be modeled as a time-series vector [7], large
area electronic skins typically generate tactile signals of high di-
mensionality which are often sparse and not well structured [8].
The sensors may also vary in shape and size depending on the
hardware used (Fig. 1). The structure of the neural network is
thus critical to the efficacy of learning-based manipulation using
tactile feedback.

Earlier works have attempted to model high-resolution tactile
inputs using Convolutional Neural Network (CNN) [6], [9].
However, CNN accepts only rectangular inputs of predefined
sizes, necessitating the resizing of tactile inputs which discards
the inherent spatial relationship between taxels. To overcome
this limitation, Graph Convolutional Network (GCN) [10] has
been introduced to encode and interpret tactile information [11],
[12]. Although GCN could handle unstructured tactile signals,
the adjacency matrix of the graph, such as the number of nodes
and connections between nodes must be specified from the start
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Fig. 1. Hardware setup. (a) An Allegro Hand covered with distributed tactile
sensors manipulates two in-hand snooker balls in simulation (left) and real-world
(right). (b) Sensor map on Allegro Hand.

and remain fixed thereafter. As a result, the network will have
difficulty encoding the time-variant spatial relationship of tactile
signals that arise from the diverse poses the robot hand may
adopt during manipulation. The GCN will also not work for
systems where the tactile sensors are configured differently, thus
restricting the applicability of the solution across platforms.
Unlike the aforementioned approaches, we treat tactile signals
as a point set, where each point represents the 3D position of
an activated tactile sensor. This tactile point set comes with
non-uniform density in different areas as the contact areas are un-
evenly distributed on the hand. The tactile point set is interpreted
by a hierarchical Graph Neural Network to capture features at
different levels [13]. This tactile graph, referred to as TacGNN,
is dynamic, i.e. the connectivity and node number of the graph
changes as the fingers are moved and the contact areas vary.
Unique to TacGNN is its ability to accommodate any sensor con-
figuration and efficiently capture the spatial relationship between
sensors. With the object pose predicted by TacGNN, we trained
an autonomous control policy for an in-hand manipulation task
using an on-policy Reinforcement Learning (PPO) algorithm
only relying on the robotic perception (Section III).

Contributions: Overall, we propose a framework for learning
and utilizing tactile features for in-hand manipulation tasks. Our
main contributions are summarized as follows:

1) We proposed a novel method-TacGNN to capture tactile
features from distributed tactile sensing, which outper-
forms prior methods like MLP, CNN, GCN on the object
pose prediction experiments.

2) We achieved a complex manipulation task - a Baoding ball
task solely relying on the predictive output from TacGNN
with an on-policy reinforcement learning algorithm.

3) Wetested our method on easy, moderate, and difficult tasks
achieving 94.71%, 88.57%, and 79.78% success rates,
which greatly surpasses prior methods.

4) We transferred the policy learned in simulation onto real
robots, demonstrating real-world results that are consistent
with the simulation.
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II. RELATED WORK

A. Learning-Based Approach for In-Hand Manipulation

As the mechanism design of the hand becomes increasingly
dedicated and complex, itis getting harder to design an analytical
model [14] to control the hands for various tasks. The rise
of deep learning provides researchers with huge potential to
achieve dexterous manipulation by experiences like humans [5],
[15], [16]. Existing work has been using the benefit of visual
data from a camera or motion capture system for dexterous
manipulation [4], [11], [14]. For example, researchers from
OpenAl propose model-free RL using vision data from a camera
to solve Rubik’s cube [S]. Bhatt et al. [14] proposed a simple
model without RL with surprising robustness performance for
manipulation tasks for various shapes, sizes, and weights of
objects based on a motion capture system. However, humans can
achieve dexterous manipulation purely based on a tactile feeling
from hands without any visual input. Such extra constraints
in dexterous manipulation yield active research in processing
tactile data and control algorithms for manipulation based on
these data.

B. Tactile-Based Approaches

Researchers have been investigating vector-based and image-
based approaches to process tactile data [6], [17], [18], [19]. Lee
et al. [7] simply model tactile signals as a vector. This approach
is particularly useful for robot joint proprioceptive force/torque.
Funabashi et al. [17] proposed a simple feed-forward CNN by
considering the tactile sensing data as an image. However, the
tactile sensor only obtained data when contacting the object,
resulting in spatially sparse sensor reading as the object moves.
Sundaram et al. [6] propose a similar CNN-based method using
distributed tactile sensors for object classification. They first
reshape the tactile signals to a rectangular size to accommodate
CNN input, which destroys the inherent spatial relationship.
This brought difficulty to processing tactile sensor data based
on CNNs approaches.

C. GNN for In-Hand Manipulation

Recent research from molecular biology, to multi-robot path
planning [20] have demonstrated promising performance of
GNN:ss to capture the interaction between a node in the graph for
node and edge classification and message passing. This property
yields the rising research in capturing tactile sensor data using
GNN [12], [21] for in-hand manipulation. The properties of
GNNS in capturing inter-node reactions inspired researchers to
use GNN as a control algorithm.

The strength of GNNs has been recently utilized in tactile
sensing. Garcia-Garcia et al. [21] proposed a GCN-based ap-
proach to capture taxel reading from BioTac SP taxel to binary
classify grasps as stable or slippery ones. Funabashi et al. [12]
proposed a GCN-based pipeline to extract geodesical features
from the tactile data from distributed taxels. However, their work
does not consider how the topology of the graph changes as the
taxel reading changes. Since the matrix dimensions of both input
and output are fixed, GCN can only process the graph as a whole,
and it is hard to process the subset of the whole graph.
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Schematic of the proposed control method for a Baoding ball task - simultaneously manipulating two spheres around each other by 180 degrees in hand.

(a) First, tactile information is treated as a point set (3D position). Then, a tactile graph is generated based on the position of each tactile sensor. (b) Learning tactile
features. First, we compute the embedding of each graph node from the neighborhood and aggregate them. Then, we sample points via farthest point sampling
(FPS). These two steps are repeated in several layers. (c) Finally, the object states predicted by TacGNN are concatenated to other robot states and fed into the
control policy (PPO). The control policy generates an action based on the state vector and an update based on the reward function.

III. METHODOLOGY

First, we will introduce the basic concept of GNN in
Section III-A, and then Section III-B explains how to use
TacGNN to interpret object states from distributed tactile sens-
ing. This model is called the perception model. All other meth-
ods, such as MLP, CNN, GCN are used as the perception model
for the ablation study in Section IV. Then, the reinforcement
learning formulation is demonstrated in Section III-C. With
the learning algorithm, we learn a continuous control policy
for an in-hand manipulation task. Finally, in Section III-D, we
summarize the perception model and control policy and show
the workflow of the training process.

A. Graph Neural Network

In this section, we briefly review the concepts of graph neural
networks. A graph typically consists of nodes and edges. A GNN
is an optimizable transformation on all attributes of the graph
(nodes, edges) that preserves graph symmetries (permutation
invariances). [22] Inspired by the documentation of PyTorch
Geometric [23], we can generalize the convolution operator on
images into the graph convolution operator that can aggregate
information from the neighborhood or operate on a message-
passing scheme. By defining node features of node ¢ in layer
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(I—1) as hi™! € R and edge features from node j to node i
as e;j; € RP, message passing graph neural networks can be
described as

hgl) SN (hglfl)ijeMn(i)QS(l) (hglfl)’hglfl),ej,i)) (1)

where A is a general symbol for any aggregation function that
holds the property of differentiable, permutation invariant, for
example, sum, mean, or max. Besides, we use v and ¢ to define
differentiable functions such as MLPs (Multi-Layer Perceptron).

B. Tactile Graph Neural Network (TacGNN)

In this section, we introduce our proposed perception model
- Tactile Graph Neural Network(TacGNN): first, we construct a
tactile graph based on the position of each tactile. Second, we
adopt a 3-layer hierarchical graph neural network to interpret
tactile features.

1) Graph Construction: As shown in Fig. 2, we define tactile
information as a point set, P = {p1, p2, p3, . . -, pn }, Where p; =
(;) is a taxel with 3D coordinates z; € R3.

Given the point cloud P, we construct a tactile graph G =
(P, E) by finding the K nearest neighbors for each tactile node
which is called the kNN search algorithm. E denotes the edges
connecting neighbors. k is 3 in this letter.
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A prominent feature of our method is that only activated tactile
sensors are considered. As a result, the number of graph nodes
varies depending on the interactive state between the robot hand
and objects. Therefore, our graph is reconstructed in every single
step. This approach can be implemented thanks to the fact that
our method only propagates information between local nodes
and does not need to consider the structure of the entire graph.
The details about the tactile learning model are shown in the
next subsection.

2) Hierarchical Tactile Feature Learning: Naturally, the ac-
tivated tactile sensors are sparsely distributed, which means our
tactile point set comes with non-uniform density in different
areas. Only the sensors in the contact area are activated. In
our project, one contact between the ball and hand normally
results in 4-5 activated tactile sensors due to compliance. The
compliance in simulation is based on the real robot.

Such non-uniformity introduces a significant challenge for
point-set feature learning. Inspired by CNN which is able to
progressively capture features at increasingly larger scales along
a multi-resolution hierarchy using the Pooling operation. At
lower levels, neurons have smaller receptive fields whereas at
higher levels they have larger receptive fields. Therefore, we
adopt a hierarchical graph neural network with a similar function
to process this tactile distribution [13], [24].

Here is the basic idea of our model: we first compute the
message propagation within a small neighborhood to extract
features in local connection; then, the graph is downsampled
into a sparse graph so that we can extract the feature on a larger
scale. This process is repeated until we obtain the features of the
whole tactile graph. An object state prediction MLP is used to
get the final output. Our hierarchical structure is composed by a
set abstraction operation - Point sampling as shown in Fig. 2(b).

In summary, our whole hierarchical network consists of three
GNN layers, and each layer is made of three stages: Message
Computation, Message Aggregation, and Point Sampling. An
MLP is added in the end to get the object state.

Message Computation: In this stage, we compute the passed
message for each edge using an MLP with hidden features and
relative positions as input. The input dimension is C' x 2 + 3,
and the output dimension is C' where C' denotes the feature
channels of each node. We further discuss the choice of C' in
Section IV-C.

h!; = ¢" (hi, b, z; — z;) )
where hé is the hidden feature of node j at propagation layer
[, xj,x; is euclidean coordinates of point 4, j and hf:,j is the
message propagated by j to ¢ (j is one of the neighbours of 7).
The coordinates of points are first translated into a local frame
relative to the centroid point: x; — ;. Using relative coordinates
is more efficient in capturing point-to-point relations in the local
region [13].

Message Aggregation: For each node, we get n x C features
from neighbours. However, the number of each node is different.
To maintain dimensional consistency, we aggregate the passed
message for each point. The input dimension is n x C, and the
output dimension is C' where C' denotes the feature channels of
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each node.
hit' = A (hf; | j € N(i)) 3)

where hé, ; is the message propagated by j to ¢ (j is one of the
neighbours of 7) and AV, (7) includes all the neighbours of node
1, and hé“ denotes the hidden feature of node ¢ at propagation
step [ + 1. The aggregation function A used is max in this letter.

Point Sampling: To extract a hierarchical feature, we down-
sample the point set via farthest point sampling (FPS) [25].
Given input points {p1,pa,...,pn}, we use FPS to choose a
subset of points {p;1, pi2, ..., Dim} such that p;; is the most
distant point from the set {p;1,pi2, ..., pij—1} with regard to
the rest points. Using an iterative FPS allows the network to
extract from local features to global features. The input is a graph
with N x C' dimension and the output is a graph with N’ x C
dimension where N’ < N. In this letter, N’ = 0.5 x N.

Object State Prediction: Finally, we aggregate the whole
graph nodes to get a graph-level feature. The input is the final
graph with V x C dimension and the output is one node with
(' channels feature. The aggregation function .4 used is max in
this letter. Then, an MLP is used to predict the object states, i.e.
position and orientation of objects. The 3D position of two balls
- a 6D vector- is predicted in the manipulation task. The training
details will be shown in Section III-D.

6=MLP (A(h})). 4)

C. Reinforcement Learning Control Policy

In this letter, the eventual goal is to learn a control policy for
an in-hand manipulation task. Here, we formulate the control
problems as an infinite-horizon discounted Partially Observable
Markov decision process (POMDP). We define the state space
or observation space as S and the action space as A. To interact
with the environments, the agent generates its stochastic policy
mo(a | s) based on the current state s, where a is the action and
0 are the parameters of the policy function. The environment, on
the other hand, produces a reward r(s, a) for the agent, and the
agent’s objective is to find a policy that maximizes the expected
reward. Note that the state space S is partially observed, i.e.,
only the robot hand-related states are observed, including robot
joint states and tactile signals.

To maximize the expected reward, we use Proximal Policy
Optimization (PPO) as our learning algorithm [26]. We con-
catenate the predicted object states by perception model in
Section III-B and robot hand proprioceptive states (joint an-
gle and velocity) as input. Output is the joint position control
command.

In RL algorithm, RLU is used as an activation function. MLP
architecture for action and value networks are [512, 256, 128].
We use Adam optimizer with a learning rate of 0.001.

D. Workflow

Our framework consists of two stages - Perception and Con-
troller. In the beginning, the perception model is initialized by
Kaiming initialization [27] and frozen. Then, the control policy
is trained with a Reinforcement Learning Algorithm. The input
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states consist of robot finger angles, robot finger velocity, object
states inferred by the perception model, and the last action
executed. Output is a position-controlled command. The reward
function is:

R(S, a) =0.5x Rangle + 250 X Rguccess + (—100) X R,
(&)
where Rauge = [|Angle,,, — Angle, || denotes the angular
change of two balls, Rgccess = (Angle,,, > 180) denotes
whether the task succeeds, Ry, denotes whether the ball falls
(out of the control of hand) or the time is out (the max time steps
is 200).

All the tactile information and object states are recorded in
this stage. Once we get enough tactile data (25,000 steps), the
perception model is trained using this dataset by supervised
learning. Input states are the tactile information and output is
the predicted object states. The loss function is computed by
Root Mean Square Error (RMSE).

> (6 — 00)?

T b
where 7' is the dimension of the object state, which is 6 in
this task. o0 is the predicted output and o is corresponding state
value. After 10 epochs of training, the method executes the
reinforcement learning stage. These two stages are repeated till
a maximum iteration number.

RMSE = (6)

IV. EXPERIMENTS
A. Allegro Hand With Distributed Sensors

An Allegro hand,! a four-fingered anthropomorphic robotic
hand with four joints on each finger is used. Hence, the whole
system has 16 DoFs.

All the fingers and the palm have been covered with our
in-house custom-made resistive tactile sensors [28]. Fig. 1(b)
illustrates the distribution of the sensing elements (taxels). On
each finger, the fingertip is covered by a 12 x 6 taxel array,
while inner-phalange links each have a 6 x 6 taxel array. The
palmis covered by 113 taxels. The readout from each taxel is one
dimensional, corresponding to the normal force experienced by
the taxel. The whole robot system setup is shown in Fig. 1. Two
balls that have identical sizes are used as manipulated objects.

Simulation experiments are conducted in Isaac simula-
tion [29]. We build simulation models based on the real sys-
tem for the sim-to-real problem. All states in the simulation
are added 10% noise. The GNN model is built with Pytorch-
Geometric [23] and runs on Ubuntu 18.04 with a V100 GPU.
All experiments are repeated three times with different random
seeds.

B. Object State Prediction

In this section, we focus on learning tactile feature and inter-
preting it into object states with supervised learning. The input
is tactile sensing information and the output is the position and
orientation of an in-hand object.

![Online]. Available: https://www.wonikrobotics.com/research-robot-hand
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TABLE I
EXPERIMENT RESULTS OF OBJECTS STATE PREDICTION
Object Metric MLP CNN GCN  TacGNN

Cube Position Loss (cm) 0.187 0.891  0.195 0.176

Orientation Loss (°)  12.31 15.87 10.33 9.17

X Position Loss (cm) 0.142 1424 0.114 0.067
Cylinder

Orientation Loss (°)  14.25 27.76  12.32 8.76

Position Loss (cm) 0.134 3.172 0.154 0.142
Meat Can

Orientation Loss (°)  19.57 2042 10.11 9.76

To validate the effectiveness and efficiency of our method for
extracting tactile features, we conduct an object state prediction
task on some regular shaped items - Cube, Cylinder, and the meat
can from the YCB object set [30]. To get a contact-rich dataset,
we execute a power grasp 200,000 times for each object with
the random initial pose. Only the final step of each execution
is recorded and the recording data includes tactile signals and
object position and orientation. Note that in some cases, the
pose of the object is rotational symmetrical and cannot be
perceived by tactile sensing. For example, the haptic sensor
will get the exact same signal when a square rotates 90 degrees
around itself. So, we constrain the rotation angle of the cube to
[0,90]. Similarly, the rotation angle of the cylindrical axis will
be ignored.

To prove the superiority of our method, we compare our pro-
posed method to other commonly-used methods: MLP models
directly take the 653 tactile values as input and predict the states
of the target object; CNN models first reshape the tactile signals
to a rectangular array and take it as input. GCN takes the tactile
signals as a static graph. It first constructs the graph based on the
initial pose of each sensor using the same method as TacGNN
and the graph structure will not change over time. TacGNN only
takes the activated tactile signal as input and the graph will
be reconstructed at every step based on the interaction state as
shown in Section III.

For each experiment, 80% dataset is used for training, and
20% is used for the test. Root Mean Square Error (RMSE) is used
to evaluate the accuracy of prediction. The results are shown in
Table I. We can see that the proposed method achieves a better
performance than other methods on all three datasets. MLP and
CNN get worse results, especially on the cylinder and meat can.

C. In-Hand Manipulation

In this section, we consider an in-hand manipulation task-
the Baoding balls task. Baoding balls task refers to the task of
simultaneously manipulating two spheres to move around each
other in the hand. Unlike the previous work [4], we only take
the robot hand states as input - robot joints states and tactile
sensors signals. This task is challenging since the two balls
share a compact workspace with each other which truly tests
the dexterity of the manipulator. Also, the inter-object contact
is difficult to be estimated and inferred.

In this task, we first predict the position of two balls based on
tactile sensing. Then, the predicted results and other robot states
are taken as input to train a control policy.
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Fig. 3. Learning Results of In-hand manipulation task. (a) Balls position prediction RMSE loss (cm) with different perception models - MLP, CNN, GCN,

TacGNN (upper), and different layer sizes (bottom). (b) Baoding balls task learning results with MLP, CNN, GCN, TacGNN as perception model (upper) and their
corresponding prediction RMSE loss in the process of training (bottom). (¢) Baoding balls task learning results with different inputs. Error margins indicate the
standard deviation of three repeatable training.

TABLE II
EXPERIMENT RESULTS OF BALLS POSITION PREDICTION

Network Architecture Train Loss (cm)  Test Loss (cm)

MLP [64,64,64] 0.230 0.250
CNN+MLP [32,16],[784,128] 0.114 27.76
GCN+MLP [32,32,32],[32,6] 0.130 0.152
TacGNN+MLP [32,32,32][32,6] 0.077 0.096
TacGNN-32 [32,32,32],[32,6] 0.077 0.096
TacGNN-16 [16,16,16],[16,6] 0.340 0.251
TacGNN-64 [64,64,641,[64,6] 0.098 0.085
TacGNN-128 [128,128,128],[128,6] 0.069 0.077

1) Perception Model With Different Architecture: To explic-
itly compare the perceived effects of different methods, the
perception model is separated from the whole training process.
We train the perception model with the same methods as before.
The input of the model is tactile information and the output is
balls object position O = [Py, P5], P € R3.

To get a high-quality, i.e. rich tactile contact, dataset, we first
train a policy to rotate two balls in hand simultaneously with
precise ball positions. This also validates the feasibility of the
task, as long as the object location is accurate enough. With this
trained model, we get 20000 trajectories, each of which consists
of around time-indexed 1000000 steps. In each step, raw tactile
data is recorded as input and the position of two balls is recorded
as the output label.

The results are shown in Fig. 3(a) and Table II. We could see
that our method TacGNN performs the lowest Root Mean Square
Error (RMSE). In addition, CNN has a much higher RMSE on
the test dataset than the training dataset, which means CNN is
more likely to overfit after training.

To get an optimized network architecture for the down-
stream manipulation task, we change the channels, i.e. the layer

size of the network, to 16, 64, 128 as shown in Fig. 3(a)
and Table II. The results show that 32 channels are enough
considering the prediction accuracy and the consumption of
computational resources.

2) Learning Control Policy With Different Perception Model.:
In this section, we train a control policy with different perception
models: MLP, CNN, GCN and TacGNN. The perception model
architecture for all methods is the same as before.

As shown in Fig. 3(b), the proposed method outperforms
other methods in the whole process of training. Other methods
can achieve good performance in some cases, but with large
variance. Fig. 3(b) show the prediction loss (RMSE Loss) during
the training. Our proposed method always gets the lowest loss
as expected. The In-hand manipulation task reward positively
correlated with the performance of the perception model.

We further test these trained models on the tasks with three
difficulty levels without further training.

1) Simple task - rotate two balls simultaneously around each
other at more than 180 degrees in angle which is the
original task in the training process.

Middle task - rotate two balls simultaneously around
each other at more than 180 degrees in angle with a
disturbing force every ten steps. The magnitude of force
F ~ N(0,0.1) N and the direction is totally random.

Hard task - In addition to the middle task, this task requires
that the robot hold for 5 steps after completing the rotation
task, in case the robot accidentally achieves the rotation
goal. This task is challenging since the robot has to keep
the ball from falling after the completion of the task.

As shown in Table III, TacGNN gets the highest success rate
in all three tasks. In particular, our method achieves around an 80
percent success rate in hard tasks. Note that the middle task and
hard task is a unseen scenario for trained policy and no further

2)

3)
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Fig. 4.

TABLE III
SUCCESS RATE OF DIFFERENT PERCEPTION MODELS ON IN-HAND
MANIPULATION TASK

Task MLP CNN GCN TacGNN
Simple  52.44 42.71 70.62 94.71
Success Rate ~ Middle  45.57 63.75 64.51 88.57
Hard 41.78 50.88 55.11 79.78
Simple  76.41 146.71 99.79 82.14
Average Steps Middle 77472 132.51 86.83 86.11
Hard 79.03 119.11  102.79 93.93

training needs to be done. As for the average steps cost in each
trial, the MLP method always took the least amount of steps, but
the lower success rate suggests that the falling of balls causes
the experiment to end early.

3) Learning Control Policy With Different Input States: To
investigate the influence of tactile information on the final per-
formance of in-hand manipulation, we conduct experiments by
changing the input state types. GROUNDTRUTH: The input
includes precise object positions and robot joint angles and
velocity. NO_PERCEPTION: The input only includes robot
joint angles and velocity. FINGER_TURQUE: The input in-
cludes robot joint angles, velocity and torques. NOISE_2, 4,
10: The input includes object positions with a uniform random
noise [—2, 2], [-5, 5], [—10, 10] mm to simulate perception
error due to obscuration, calibration error, etc., and robot joint
angles and velocity.

As shown in Fig. 3(c), TacGNN could eventually catch
up to Groundtruth’s performance with more training data.
NO_PERCEPTION and FINGER_TURQUE remain the low
rewards since it lacks enough interaction-related information.
Noised object information influences the speed of convergence
and final performance.

D. Real Robot Experiment

Finally, we validate our method on a real robot system as
shown in Fig. 1(b). Domain Randomization [31] is adapted to
enable policy trained solely in simulation to transfer to a
real robot. Domain randomisation parameters include Mass of
ball [0.1, 0.2] kg; Friction [0.8, 1.2]; Gravity [7.0, 12.0] m/s?;
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Key frames of in-hand manipulation experiments on simulation and real robot.

Joint Stiffness and Damping [0.8, 1.2]x Initial Value. The
initial value of joint stiffness and damping is determined by
a grid search. First, the real robot executes a series of position-
controlled commands (0°, 15°,30°,45°,60°) and the angles of
joint are recorded. Then, a grid search - joint stiffness [1, 3,
5] N/m, joint damping [0, 0.1, 0.5] Ns/m is conducted in simu-
lation and the same position-controlled commands are executed
for each joint. Finally, the recorded angles in simulation and
reality are computed to a loss. The parameters with the lowest
loss are chosen as the initial value of joint stiffness and damping.

A successful trial in the real robot is shown in Fig. 4, the robot
shows a similar performance to the simulation. This verifies that
the learnt tactile feature and policy can be applied to a real robot.

V. DISCUSSION

1) Object States Perception: Robotic tactile sensing brings
3D physical relations between robots and objects. Compared
to vectors and 2D images, graph data structure could maintain
the geometrical relations among data points. That could be the
reason that GCN and TacGNN perform better in object states
prediction tasks, especially for cylinder and meat can.

CNN reshapes the tactile array to a rectangular shape, which
highly destroys the relations of tactile signals. For example,
the tips of the thumb and middle finger will be close together
when power grasp, but they will be far apart in the reshaped
picture. This leads to the worst performance and instability of
CNNs in prediction tasks. Compared to GCN, TacGNN only
takes the activated tactile nodes as input and reconstructs the
graph at every step, which is beneficial for encoding the spatial
relationship from diverse hand poses.

2) In-Hand Manipulation: As for the comparison experi-
ments on perception methods, the reward positively correlated
with the performance of the perception model. The control
policy with TacGNN gets the best rewards and the fastest con-
vergence time.

More than the basic test, simply rotating two balls more
than 180 degrees, we add two advanced tasks with external
perturbations and hold-on targets. Our method handles well and
is generalized to these without further training.

As for the comparison experiments on the input information,
we can see that although GROUNDTRUTH converge faster than
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TacGNN, our method can achieve similar performance with
enough training data. Object-hand interaction information is
essential for this in-hand manipulation task. To a certain extent,
we accomplished this dexterous manipulation task by relying on
the robot hand’s own perception.

3) Small Sim2Real Gap: We get similar performances in
simulation and reality as shown in Fig. 4. The first frame is
the initial pose of the robot and object. Then, the middle finger
stretches, and the ring finger compresses to stop the red ball
from falling. In the next few frames, the index finger, middle
finger, and ring finger construct a concavity to contain the white
ball. Finally, the red ball is pushed to the other side by the ring
finger and the white ball is pushed to the middle of the palm.
The thumb finger is another “wall” to stop balls from Falling.

VI. CONCLUSION AND FUTURE WORKS

In conclusion, this letter presents a novel framework for
tactile-based in-hand manipulation tasks. First, we propose a
novel method-TacGNN as a perception model to extract tac-
tile features-manipulated object states. Then, using the tactile
features from the perception model, we train an autonomous
control policy with PPO reinforcement learning algorithm for
an in-hand manipulation task. The results show that our method
outperforms other commonly-used methods (MLP, CNN, GCN)
to interpret tactile information. Finally, features extracted with
our perception model are able to provide enough interaction
information for in-hand manipulation tasks and such dexterous
skills could be achieved solely relying on robotics own percep-
tion. We validate our approach by implementing it on a real robot
system and achieve comparable performance results.

However, this work is a preliminary exploration of a GNN-
based tactile in-hand manipulation task. There are limitations in
this work. The “tactile blind area” occurs in manipulation. For
example, the object could be stuck in the gap between tactile
arrays. At that step, no tactile sensors are activated and no tactile
sensing is input. A possible solution is to use time-series infor-
mation so that robot could deduce an approximate perception of
objects from previous data.
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