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1. Introduction

Collecting delicate deep-sea specimens of geological or biological
interests with robotic grippers and tools is central to supporting
fundamental research and scientific discoveries in environmen-
tal and ocean research.[1,2] The human fingers are dexterous in
object manipulation thanks to the finger’s musculoskeletal
biomechanics and skin’s tactile perception even in harsh envi-
ronments such as underwater.[3,4] Much research has been

devoted to skilled object manipulation in
daily life scenarios.[5] However, limited
research focuses on transferring such capa-
bilities to an underwater environment.[6]

The ambient environment significantly
challenges visual and tactile feedback inte-
gration while performing object grasping
for visual identification under fluidic
interference on the surface of physical
interaction.[7,8] As a challenging task for
humans, designing and developing robotic
solutions for reactive and reliable grasping
becomes even more complicated when
the end-effector is fully submerged
underwater.[9]

1.1. Design toward Soft Grasping for
Ocean Exploration

Object grasping is essential for environ-
mental and ocean research to collect in situ
specimens, where a trend toward softness

in gripper design shows a growing adoption over the years.[10]

Classical research on underwater grasping mainly focused on
a direct translation of mechanical grippers made from rigid
materials with waterproof design for all components, including
the actuators, mechanisms, and sensors, resulting in a bulky
design that is usually difficult for system integration.[11]

Previous research reports a modular continuum finger for dex-
terous subsea manipulation with force and slip sensing, where
the complex integration of a range of mechanical, electrical, and
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Robots play a critical role as the physical agent of human operators in exploring
the ocean. However, it remains challenging to grasp objects reliably while fully
submerging under a highly pressurized aquatic environment with little visible
light, mainly due to the fluidic interference on the tactile mechanics between the
finger and object surfaces. This study investigates the transferability of grasping
knowledge from on-land to underwater via a vision-based soft robotic finger that
learns 6D forces and torques (FT) using a supervised variational autoencoder
(SVAE). A high-framerate camera captures the whole-body deformations while a
soft robotic finger interacts with physical objects on-land and underwater. Results
show that the trained SVAE model learns a series of latent representations of the
soft mechanics transferable from land to water, presenting a superior adaptation
to the changing environments against commercial FT sensors. Soft, delicate, and
reactive grasping enabled by tactile intelligence enhances the gripper’s under-
water interaction with improved reliability and robustness at a much-reduced
cost, paving the path for learning-based intelligent grasping to support funda-
mental scientific discoveries in environmental and ocean research.
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computing subsystems limits the use of this prototype out of a
laboratory testing tank.[12] Another submarine gripper was devel-
oped as part of the European project TRIDENT,[13] demonstrat-
ing dexterity for executing grasping and manipulation activities,
but suffers from challenges when interacting with the delicate
subsea environment and objects.

Recent development in soft robotics adopts a different
approach to leverage material softness for grasping.[14] The
advantage of soft grippers for underwater scenarios is a system-
atic integration of fluidic actuation, motion transmission, and
form-closed adaptation enabled by the soft, lightweight, low-cost
material and fabrication against an aquatic environment with
reduced complexity using simple open-loop control.[2] These soft
grippers demonstrated successful, compliant interaction with
various objects underwater.[15] A recent review shows an emerg-
ing research gap in introducing sensory capabilities to soft grip-
pers underwater for closed-loop grasping feedback.[16]

1.2. The Need for Vision-Based Tactile Grasping Underwater

Inspired by the tactile perception of human fingers, a wide range
of robotic research has been devoted to integrating with object
grasping in industrial or daily life settings.[17] Current research
on tactile perception often leverages material softness for skin-
like design.[4] Recent work in 3D tactile tensegrity has expanded
the adoption of tactile sensing to the underwater environment,
presenting a promising direction through the integration of soft
self-powered triboelectric nanogenerators and deep learning-
assisted data analytics for underwater exploration.[18] While
recent work gave an exhaustive investigation of tactile sensors
and their applications in intelligent systems,[19] there is also

an emerging field of vision-based tactile sensors in robotics
under-represented in this field.[20]

Vision-based tactile perception leverages machine vision to
provide multimodal contact information with detailed spatial res-
olution.[21] The focus is to deploy soft media that deform under
external forces and infer tactile information from visual observa-
tion.[22] Sato et al.[23] built a linear approximation model to esti-
mate the contact forces by tracking two colored spherical markers
arranged at different depths of an elastomer surface. Yamaguchi
et al.[24] presented another low-order approximation model to
infer the contact forces from observed makers’ variations in
the camera. Unfortunately, the current literature has not yet
explored the adoption of vision-based tactile robotics in the
underwater scenario.

1.3. Machine Learning for Latent Intelligence in Tactile Robotics

The performance of machine learning algorithms heavily
depends on the choice of data representation.[25] When projec-
ting complex soft robotics deformation into image space,[26] a
growing trend of research is devoted to treating the representa-
tion of a captured image as the latent variables of an appropriate
generative model.[27] The generative models are usually highly
interpretable in understanding the causal relations of the obser-
vations,[28] making it a potential solution to increase the robust-
ness of vision-based, soft, tactile sensing underwater where the
environmental uncertainties are much worse than the daily life
or industrial settings, as shown in Figure 1.

Variational autoencoder (VAE) recently emerged as a powerful
generative model that learns the distribution of latent variables
and is widely used for visual representation in robot

Figure 1. Overview of the soft visual-tactile learning across land and water using SVAE. a) Design of the sensorized soft finger where the camera board is
sealed with a silicon layer. b) The integrated amphibious gripper is transformed by replacing the fingertip of a Robotiq Hand-E gripper with the sensorized
soft finger with omnidirectional grasping adaptations. The Hand-E gripper has an ingress protection (IP) rating of IP67, which is suitable for our under-
water experiment in a tank without extra waterproofing. c) The scheme of visual–tactile learning takes an image of the deformed metamaterial as input,
reconstructs the image, and simultaneously predicts the force and torque. d) The amphibious gripper is mounted on a Franka Emika Panda robot arm to
execute force control tasks on land and underwater.
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learning.[28–30] Since the original publication, many variants and
extensions of VAE have been proposed. Semisupervised varia-
tional autoencoder (SVAE) was proposed to address the problem
of unlabeled data training.[31] Higgins et al.[32] introduced weight
to balance the reconstruction error and regularization of latent
variable distribution, enabling learning of a disentangled latent
representation. The recent adoption of a SVAE model for identi-
fying critical underlying factors for prediction demonstrates the
promising potential for application in robotic grasping.[33]

This study investigates the transferability of grasping knowledge
from on-land to underwater via a vision-based soft robotic finger
that learns 6D forces and torques (FT) using SVAE.Using real-time
images collected from an in-finger camera that captures the soft
finger’s whole-body deformations while interacting with physical
objects on-land and underwater, we established a learning-based
approach to introduce tactile intelligence for soft, delicate, and
reactive grasping underwater, making it a promising solution to
support scientific discoveries in interdisciplinary research.

2. Results

2.1. In-Finger Vision for a Soft Tactile Finger

Here we present the in-finger vision design for tactile sensing
compatible with both on-land and underwater scenarios, as
shown in Figure 1a. The finger is based on a soft metamaterial
with a shrinking cross-sectional geometry toward the tip, capable
of omnidirectional adaptation on the finger surface to unknown
object geometries, enabling a passive form closure for robotic
grasping.[34] A monocular RGB camera (120 frames per second)
is mounted inside a support frame under the finger to obtain
high-framerate images of the finger’s adaptive deformations at
a resolution of 640� 480 pixels. The support frame is 3D printed
with the optically transparent material (Somos WaterShed XC
11122). All electronics inside are waterproofed by dipping the
camera board, except the lens, into transparent silicon. We added
six light-emitting diodes (LEDs) to the camera board for improved
lighting conditions, resulting in an integrated design of a water-
resistant, soft robotic finger with machine vision from the inside.

Figure 1b shows the integration of the proposed finger with a
Robotiq’s Hand-E gripper, which has an ingress protection rating
of IP67 for testing in lab tanks. The proposed soft finger exhibits
spatial adaptive deformations, conforming to the object’s geom-
etry during physical contact and exhibiting both regular and
twisted adaptions for enhanced robustness for grasping, as
shown in Figure 1d. For more intensive use in the field, one
can directly mount the soft finger to the tip of existing grippers
on an underwater vehicle. We demonstrated the effeteness of
using the soft finger by grasping some Yale–CMU–Berkeley
objects of various shapes and softness underwater or floating
on the water surface.[35] See Movie S1 in the Supplementary
Materials for further details.

The advantage of the proposed design is a complete separation
of the sensory electronics from the soft interaction medium by
design, resolving the issues of an enclosed chamber that may
suffer from severe surface deformation when used underwa-
ter.[20] Such design enables us to collect real-time image streams
of the physical interaction between the soft finger and external

object using the in-finger vision, as shown in Figure 1c, which
can be further implemented with generative models, such as the
SVAE, to provide the tactile perception of grasping interactions,
both on-land and underwater.

2.2. Generative Tactile Learning via Supervised Variational
Autoencoder

Here presents a generative learning architecture for tactile per-
ception in both on-land and underwater scenarios with latent
explanations using a SVAE in Figure 2.

The generative model is illustrated in Figure 2a, which
includes an encoder qϕðZjX Þ to process real-time images from
the in-finger vision, then processed through a latent space oper-
ation to estimate latent distribution of the interactive physics
Z∼NðZμjX θÞ, assuming a normal distribution. Here, we added
a force and torque prediction based on Zμ to produce the 6D tac-
tile estimation as an auxiliary output. Finally, through a genera-
tive decoder pθðZjX Þ, our model reproduces images of the tactile
interactions based on the learned SVAE model. Note that θ and ϕ
are the parameters of the encoder and decoder neural networks,
which must be optimized during training. Note that the SVAE
model’s loss function for training is the combination of image
reconstruction loss, force/torque prediction loss, and latent
representation regularization loss. Following the detailed formu-
lation of the SVAEmodel in the Experimental Section, for tuning
with small datasets, we introduced two hyperparameters, α and β,
to modify the objective function into the following, where the
parameter α ≥ 0 is used to adjust the relative importance during
optimization between the image reconstruction and force/torque
prediction tasks.

L̃ðθ,ϕ;X ,Y Þ ¼� α

1þ α
kX � X̂k � 1

1þ α
kY � Ŷk

þ βDKL½NðZμ,ZσÞjjNð0, IÞ�
(1)

Figure 2b shows the predicted 6D FT via SVAE against the
ground truth. The R2 scores are higher than 0.98 for 6D force
and torque predictions, indicating the SVAE model’s excellent
performance in tactile sensing on the test dataset. We also plot
the distributions of prediction errors in each 6D force/torque
dimension over different ranges in Figure 2c. For applied forces
ranging between ½0, 2Þ, ½2, 4Þ, ½4, 6Þ, ½6, 8Þ, and ½8, 10Þ N, the stan-
dard deviations of the prediction are 0.07, 0.06, 0.09, 0.12, and
0.24 N, respectively. For applied torques ranging between
½0, 120Þ, ½120, 240Þ, ½240, 360Þ, ½360, 480Þ, and ½480, 600Þ N⋅ mm,
the standard deviations of the prediction are 4.6, 3.9, 6.0, 9.1, and
20.3 Nmm, respectively. These results follow a Gaussian distribu-
tion with a near-zero mean and an increasing standard deviation
as the range becomes more considerable. The force-sensing errors
are comparable in the x and y axes and more prominent in the
z axis, while the torque-sensing errors are the least in the z axis.
This characteristic is primarily due to themetamaterial’s structural
design, which is less sensitive to the force along the z axis.

We also conducted a comparative study to evaluate the
proposed SVAE model against two baseline models, including
a ConvNet model for force and torque prediction only and a
VAE model for image reconstruction only, with results
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summarized in Table 1. These two models share the same net-
work architecture as the SVAE but are trained separately.
However, the ConvNet model is a deep regression network with
a convolutional layer that only takes force/torque prediction loss.

VAE model is a VAE that only takes image reconstruction and
latent representation regularization loss. We used mean square
error between the original and reconstructed images to evaluate
the representation learning task and the coefficient of determi-
nation R2 to assess the overall force/torque prediction task. See
Methods S1 in the Supplementary Materials for further details
on training data collection.

The SVAE has shown comparable performance over the
vanilla VAE in the representation learning task while α is
approaching infinity. Meanwhile, SVAE outperforms the deep
regression model ConvNet in the force/torque prediction task
when α ≤ 1 and the training is focused more on the prediction
task, achieving over 99.45% on the validation set. Since SVAE is a
multitask learning framework, the hyperparameter α is vital in
balancing the reconstruction and prediction tasks. Here, α ¼ 1
is chosen for all validation tests and real-time experiments.
The results show that the cotrained representation learning
enhances the force/torque prediction task.

Considering the insufficient soft finger underwater deforma-
tion images and corresponding ground truth 6D force/torque

Figure 2. Latent deformation learningmodel for the soft metamaterial. a) The architecture of the SVAEmodel, where a VAE is combined with a supervised
regression task for force and torque prediction. b) Predicted force/torque versus the ground truth in each of the six dimensions on the test dataset.
c) Distributions of prediction errors in each 6D force/torque dimension over different ranges.

Table 1. Comparative analysis of the proposed SVAE’s performances.

Models Settings Image reconstruction
error (MSE)

Force/torque prediction
accuracy (avg.)

ConvNet Vanilla � 96.04%

SVAE α ¼ 0.001 5.19� 10�2 99.53%

α ¼ 0.01 5.17� 10�2 99.52%

α ¼ 0.1 2.02� 10�2 99.53%

α ¼ 1 9.47� 10�3 99.45%

α ¼ 10 6.68� 10�3 96.22%

α ¼ 100 5.65� 10�3 61.46%

VAE Vanilla 5.36� 10�3 �
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data pairs, we trained the underwater SVAE model from one pre-
trained on-land SVAE model and fine-tuned it using limited
underwater data. To test the transferability of the 6D force/torque
prediction performance of the fine-tuned underwater SVAE
model, we conducted the same collision experiments using
soft fingers in both on-land and underwater scenarios for
real-time 6D force/torque prediction. See Movie S2 in the
Supplementary Materials for a video demonstration of real-time

6D force/torque prediction in the collision experiments. See
Methods S2 in the Supplementary Materials for further discus-
sion on the transferability of the model’s predictive performance.

2.3. Land2Water Generalization of Tactile Representation

We also investigated the generalization of tactile representations
learnt via SVAE in a Land2Water skill transfer problem for tactile

Figure 3. Representation learning of deformations of the proposed soft metamaterial. a) The complex deformations of the soft metamaterial on land and
underwater are represented in the latent space. b) Correlation map of learnt 32 latent variables. c) Reconstructed images of varying selected latent
variables. d) The relative correspondences between latent variables and force/torque.
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sensing in Figure 3. While implementing the SVAE model, we
chose a 32-dimension definition with a balanced trade-off
between reconstruction error and dimensional complexity in
explanatory power. See Methods S3 in the Supplementary
Materials for further discussion.

Figure 3a shows the comparison of the 32D latent space vec-
tors for tactile perception between on-land (top) and underwater
(bottom) scenarios when the soft finger experiences the same
deformation delivered by the robotic arm. Five random instances
of the in-finger vision are chosen for each scenario and plotted
with their corresponding latent variable distributions. We identi-
fied a similar distribution between the upper and lower plots for
these five random instances. This suggests the transferability of
the latent variables’ explanatory power in tactile perception
between the on-land and underwater scenarios. This is because
the learnt latent representation could be close to the intrinsic
dimension of the soft finger deformation, minimizing the infor-
mation loss during tactile image encoding. The segment of the
soft finger interacting with objects is made from 3D-printed meta-
material without any electronic parts, whose mechanical proper-
ties are not affected by water, indicating the generalization of
tactile representation in Land2Water transfer, which is reported
for the first time in the vision-based tactile-sensing literature.

The correlation map plotted in Figure 3b suggests that these
32 latent variables learnt from our SVAE model are generally
unrelated, which is a preferred property for representation
learning.[25] However, for variable clusters such as fZ7,Z8,Z9g
and fZ12, : : : ,Z15g, regional correlation is observable at a rela-
tively small scale. We also demonstrate the latent interpolation
for the metamaterial’s deformation projected in the image plane
on selected dimensions of fZ1, Z3, Z15, Z20, Z28g in Figure 3c,
which gives an intuitive sense of what are the latent variables in
physical space. For example, we found that Z1 and Z3 are related
to pushing right-downward and right-upward when their values
go from negative to positive, while Z15 and Z20 are related to
moving left-upward and left-downward. Furthermore, Z28 has
a prominent horizontal movement. These latent variables are
strongly related to representing the complex deformations of
the soft metamaterial in terms of image reconstruction but
are not disentangled. As shown in Figure 3d, the correlation
between the 6D force/torque and the 32D latent variables is com-
plex and diversified. For example, the latent variable Z28 strongly
correlates with Fy, which agrees with the reconstructed horizon-
tal movement along the corresponding axis of the camera
coordinate.

2.4. Land2Water Grasping Knowledge Transfer

This section presents two experiment results that implement the
Land2Water grasping knowledge obtained through tactile sens-
ing, including one for object grasping against location uncertain-
ties and another for tactile sensorimotor grasping adaptability
from on-land to underwater scenarios.

2.4.1. Object Grasping Against Location Uncertainties

This experiment demonstrates the equal necessity of tactile
perception when grasping underwater in Figure 4, which is

generally acknowledged to increase the robustness in on-land
conditions. Figure 4a,c shows the open-loop grasping without
force feedback, where the gripper reaches the target grasping
point, closes the fingers to a given gripping width, and lifts
the object. In the case of closed-loop grasping with force feed-
back, as illustrated in Figure 4b,d, the gripper adjusts the grip-
ping width according to the force estimation from SVAE until a
grasping confirmation signal is triggered and then lifts the
object. The prediction output from state-of-the-art learning-based
grasp planning models usually contains grasping point position
and gripper width.[36,37] To compare the performance of different
grasping policies during grasping execution, we manually
selected the gripper’s grasping positions and gripping widths
for each test object shown in Figure 4e and then added a small
noise with standard deviation σ ¼ 5 mm to simulate noises in
gripper width prediction from grasping planning model.
Figure 4f summarizes the ten grasping trials for each object
using both methods and reports success rates. The average suc-
cess rate for on-land grasping of the five test objects is 44% with-
out contact feedback. After adding tactile feedback, the success
rate is significantly enhanced to 100%. After adding tactile feed-
back, our results show a similar enhancement for underwater
grasping, boosting the average success rate from 30% in
open-loop grasping to 90% in closed-loop grasping. Figure 4g,
h shows the histograms of the forces applied in 100 successful
on-land and underwater grasps of the egg each, using different
grasping policies. Compared with the open-loop grasping policy
in both on-land and underwater scenarios, on the condition of
simulated noisy gripper width, the variance of grasping forces
applied using the closed-loop grasping policy is significantly
reduced. See Movie S3 in the Supplementary Materials for a
video demonstration. See Method S4 in the Supplementary
Materials for a detailed force–time profile during each
experiment.

2.4.2. Tactile Sensorimotor Grasping Adaptability

This experiment demonstrates sensorimotor grasping using tac-
tile perception enabled by the proposed SVAE model, which is
transferable from on-land to underwater scenarios. Figure 5a
demonstrates the overall experiment process. Once contact
begins, the in-finger vision captures the whole-body deforma-
tions of the soft finger and feeds the SVAE model with real-time
image streams of the physical interaction at 120 Hz. The 6D FT
are predicted for both on-land and underwater scenarios and
then compared against a predefined threshold for reactive grasp-
ing. During this process, the width between the two soft fingers
is actively adjusted to accommodate the disturbances in object
status, that is, fluidic disturbances for grasping underwater
and sudden collision for on-land grasping. We execute the reac-
tive grasping by sending reference position commands to a posi-
tion controller in the robot system using a motion generator
calculated by the measured gripper position and force error
detected on the fingers.

Figure 5b illustrates the experiment process that tests the grip-
per system’s responsiveness of tactile-reactive grasping, a desir-
able capability for both on-land and underwater grasping of
objects with known properties. After making contact with a
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slightly rotated tube, fixed, of oval cross section, we send force
commands to the gripper to maintain a contact force at 0.4,
1.6, and 3 N sequentially. Shown in Figure 5c,d are the recorded
force (in blue) against the commanded force (in red) when the
experiment was conducted on-land and underwater. In both sce-
narios, the force controller successfully transited and stabilized at
the commanded contact force within seconds. See Movie S4 in
the Supplementary Materials for a video demonstration.

Figure 5e illustrates another experiment that tests the grip-
per’s capability to maintain a specified contact force while react-
ing to disturbances, a preferred but more challenging skill for
both on-land and underwater grasping of objects with unknown
yet delicate properties. In this experiment, the oval-shaped tube is
commanded to rotate clockwise in 45∘ and 60∘ first and then
counterclockwise in 90∘ to simulate the changing interaction
between the gripper and target object. During the process, the
gripper needs to maintain a 0.4 N force for the on-land experi-
ment in Figure 5f and a 1.6 N force for the underwater experi-
ment in Figure 5g. When the target object changes its pose

during rotation, the gripper reacts to the shape variation based
on the estimated force from SVAE. See Movie S5 in the
Supplementary Materials for a video demonstration. We also
tested the gripper’s reactive grasping under rotational disturban-
ces by turning a cylinder along the z-axis. In this case, the SVAE
model successfully predicted a torque while the fingers started
twisting and commanded the gripper to rotate while maintaining
a zero torque τz in reactive motion. See Movie S6 in the
Supplementary Materials for a video demonstration.

3. Discussion

It has been a challenge to introduce robotic intelligence into
underwater grasping by adding the sense of touch,[16] which
supports delicate and autonomous interactions with the unstruc-
tured aquatic environment for scientific activities in environmen-
tal, biological, and ocean research. Classical solutions usually
take a mechanical approach with various sealing technologies

Figure 4. Tactile grasping results with or without SVAE in on-land and underwater scenarios. a) Open-loop object grasping on land with a predefined
grasping position. b) Closed-loop grasping on land with contact force feedback. c) Open-loop object grasping underwater with a predefined grasping
position. d) Closed-loop object grasping underwater with contact force feedback. e) Test objects with the predefined grasping points marked. f ) The grasp
result summary. g) Histogram of the forces applied in the successful on land grasps of the egg. h) Histogram of the forces applied in the successful
underwater grasps of the egg.
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to deal with fluidic pressure and corrosive contamination, suffer-
ing trade-offs in engineering flexibility and intelligent percep-
tion. This work proposes a vision-based approach to achieve
high-performing tactile sensing underwater by combining the
emerging advancement in soft robotics and machine learning.
The simplicity of the design enables a minimum set of mechan-
ical components, avoiding dynamic seals for enhanced robust-
ness underwater. The soft finger’s passive adaptation and in-
finger vision enable a seamless integration of the proposed
SVAE to learn tactile sensing through visual sensing underwater.

The latent representations learnt from the SVAE algorithm
enable a generative solution to infer the 6D FT during physical
interactions underwater with explanatory reasoning. As a result,
we successfully transferred the tactile intelligence of the pro-
posed gripper system from on-land to underwater. We achieved
tactile force prediction accuracy above 98% along each axis on the
testset, using the same hardware with minimal algorithmic
parameter adjustment. Real-time grasping experiment results
in a lab tank demonstrate the effectiveness of the soft tactile
finger for reliable and delicate grasping in both environments.

Figure 5. Tactile perception of soft finger for real-time robotic grasping control. a) Experiment setup of the force control tasks with soft tactile sensing.
The goal of the force control tasks is to maintain the contact force at the required values by controlling the position of the soft finger. b–d) Desired
gripping force following experiments. The gripping force is commanded to a series of expected values, and the corresponding gripper adaptation stages
are illustrated in different colors. e–g) In-hand object shape adaptation experiments. The grasped object’s shape changes constantly, and the gripper
sensitively adjusts its position to maintain the constant gripping force.
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Model explainability and generalization are primarily con-
cerned in machine learning research. Considering the transfer-
ability of tactile intelligence from on-land to underwater, we
leveraged the VAE model’s powerful representation learning
capability to express the soft finger’s deformation patterns in
latent space. Results show that the extracted latent features of
the same finger deformation in different environments exhibit
a similar distribution. From the statistical inference perspective,
learning this low-dimensional deformation pattern is closely
related to the dimension reduction problem[38] where the learnt
latent representation corresponds to an approximated sufficient
statistics of original data.[39] In contrast with conventional dimen-
sion reduction techniques such as principal component analysis,
the convolutional neural network usually performs better in find-
ing the low-dimensional representation from image data.[40]

Performance degradation of tactile force prediction from on-
land to underwater is unavoidable due to the significant change
of visual input to the SVAE model. Due to unpredictable fluid
dynamics, object grasping underwater is generally more chal-
lenging than on-land, which is the same case with or without
tactile feedback, as demonstrated in our results. However, adding
tactile feedback to the gripper system effectively enhanced the
reliability of underwater grasping. The finger’s network design
cuts the fluids while closing, generally causing fewer disturban-
ces for underwater grasping, a common problem usually suf-
fered by fingers with a rigid structure.[9]

Tactile perception is generally desired to achieve effective
grasping behaviors in underwater environments but is underex-
plored in research and practice compared with the on-land
scenarios.[16,41] Operational tasks for underwater robotics are
usually associated with a lack of vision, leading to ambiguous
recognition of objects,[42] in which tactile perception plays an
important role. Our results in grasping success rates demon-
strate the benefit of tactile perception when visual perception
is underperforming. Besides, reactive control architecture based
on the perception–action cycle can be integrated with our tactile
soft finger to achieve more intelligent manipulation underwater.

Our presented work has several limitations, which need future
research for optimization in structural design and learning
algorithms. For example, visual input tends to be corrupted by
background noise in an underwater environment, which could
be alleviated mechanically by adding a layer of silicone skin
on the finger surface.[43] We could also enhance the tactile per-
ception using XMem[44] to track the soft finger’s deformation
from the in-finger vision or use inpainting algorithms[45] to
use the in-finger vision for visual perception. The proposed
underwater grasping system is yet to be tested on remotely oper-
ated vehicles in shallow and deep water for further engineering
enhancement.

4. Experimental Section

Formulating the Supervised Variational Autoencoder: Accurately deriving
the relationship between deformation and force of soft structure can
significantly improve the efficacy of visual–tactile sensing.[46] However,
the geometry-dependent deformation of the soft structure is complex
to represent. Even though we can discretize the structure with standard
node elements using the finite-element method, measuring the

displacements of corresponding nodes from a monocular camera can
be another problem.

The standard solution involves a two-step method by first building a
force–displacement mapping of soft structure and then solving the partial
observable vision problem using a monocular camera.[47] Here, we lever-
aged the interpretability of latent variables in the original VAE model and
constrained these learnt factors to image-based features of our soft finger
deformation using in-finger vision, where the restored force could be mea-
sured during training and acted as a supervised signal to guide the learn-
ing of latent space.

As shown in Figure 2a, suppose the collected, labeled data pairs ðX , YÞ
are independent and identically distributed, where X and Y are images and
vectors of force/torque, respectively. The aim is to find an optimal repre-
sentation Z of X containing sufficient information about Y . To tackle both
representation learning and force/torque prediction tasks, we extended
the optimization framework of the original VAE[28] to an additional super-
vised task and maximized the log-likelihood function of marginal proba-
bility log pθðX ,YÞ.

log pθðX , YÞ ¼ Lðθ,ϕ;X ,YÞ þ DKL½qϕðZjXÞjjpθðZjX ,YÞ� (2)

where Lðθ,ϕ;X , YÞ is the evidence lower bound (ELBO) for SVAE, which
can be extended as

log pθðX , YÞ ≥ Lðθ,ϕ;X , YÞ
¼ EZ∼qϕðZjXÞ½logpθðX jZÞ� þ EZ∼qϕðZjXÞ

½logpθðY jZÞ� � DKL½qϕðZjXÞjjpθðZÞ�
(3)

In Equation (3), for continuous data of image, force, and latent varia-
bles X , Y ,Z, the prior distribution of the latent variables pθðZÞ, distribution
of probabilistic encoder qϕðZjXÞ, and decoder pθðX jZÞ, pθðY jZÞ were
assumed to follow a normal distribution.

pθðZÞ ∼Nð0, IÞ
qϕðZjXÞ ∼NðZμðX ,ϕÞ,ZσðX ,ϕÞÞ
pθðX jZÞ ∼NðXμðZ, θÞ, IÞ
pθðY jZÞ ∼NðYμðZ, θÞ, IÞ

(4)

Maximization of the new ELBO in Equation (3) was equivalent to maxi-
mizing the following optimization object, where the outputs from two
decoders were denoted as X̂ and Ŷ , respectively.

L̃ðθ,ϕ;X , YÞ ¼ �kX � X̂k � kY � Ŷk þ DKL½NðZμ,ZσÞjjNð0, IÞ� (5)

Therefore, we built a hierarchical, convolutional, multiscale model for
the encoder and decoder to model the long-range correlations in image
data. We used four residual serial blocks to extract and reconstruct image
features in different scales.[48] The first two terms in Equation (5) mea-
sured reconstruction errors and force/torque prediction errors, respec-
tively. The third term encouraged the approximated posterior qϕðZjXÞ
to match the prior pθðZÞ, which controlled the capacity of latent informa-
tion bottleneck. Although the derived optimization objective function
Equation (5) implicitly balanced the three sources of loss, its optimization
could be complex in practice. To resolve this issue, we proposed the for-
mulation of Equation (1) in Section 2.2 by introducing hyperparameters α
and β to Equation (5).

Introducing parameter β ≥ 0 ahead of the third term of Equation (1)
was inspired by the work of Higgins et al.[32] so that the optimal β could be
estimated heuristically in unsupervised scenarios. We tested several
choices of β in a candidate set, ranging from 10�4 to 102, and fixed
β ¼ 0.1 in our experiment.

All networks were trained on a computer with NVIDIA GTX 1080Ti
GPU, a batch size 64, and Adam optimizer.[49] Considering the relatively
small dataset size, the initial learning rate was set to 5� 10�5 and
decreased with the training epoch.
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Tactile Grasping from On-Land to Underwater: We conducted object
grasping experiments in a lab tank with and without contact force feedback
for both on-land and underwater conditions to demonstrate the benefit of
tactile learning in reliable object grasping against environmental uncertain-
ties. We tested the grasping success rate using objects of different shapes,
sizes, and materials from on-land to underwater. With the adoption of
learnt tactile perception, two more tasks were tested to demonstrate intel-
ligent grasping behaviors in both on-land and underwater conditions.

As is shown in Figure 5a, to achieve an intelligent closed-loop grasping
behavior, it is an essential requirement for the grasping system to main-
tain a specified contact force while reacting to the varying environment.
The industrial gripper could achieve reliable position commands at a high
bandwidth due to the built-in low-level position controller. It is our goal to
design a high-level position control policy u ¼ πðPm, Fest, Fref Þ with mea-
sured gripper position Pm and estimated contact force Fest that achieves
the desired contact force Fref .

πðPm, Fest, Fref Þ ¼ argmin
u

jFest � Fref j (6)

Thanks to the proposed tactile force proprioceptive soft finger, which
acts simultaneously as an end-effector and a sensor, a heuristic control
policy π ¼ Pref was presented to generate the reference motion command
for the inner low-level position control loop, as shown in Algorithm 1. The
frequency of tactile perception feedback was determined by the computa-
tional time cost of the proposed SVAE model and the frame rate of the
USB camera. We used a 1060Ti 6G GPU laptop in all grasping
experiments, and the average inferring time was 5ms. As a result, the
force controller frequency was bound by the camera frame rate at
120 Hz. Note that to estimate the contact force parallel to the gripping
direction, modification of SVAE output was necessary. See Methods S5
and Methods S6 in the Supplementary Materials for a detailed derivation
of controller design.
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