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Besides direct interaction, human hands are also skilled at using tools to manipulate
objects for typical life and work tasks. This paper proposes DeepClaw 2.0 as a low-cost,
open-sourced data collection platform for learning human manipulation. We use an
RGB-D camera to visually track the motion and deformation of a pair of soft finger
networks on a modified kitchen tong operated by human teachers. These fingers can
be easily integrated with robotic grippers to bridge the structural mismatch between
humans and robots during learning. The deformation of soft finger networks, which
reveals tactile information in contact-rich manipulation, is captured passively. We
collected a comprehensive sample dataset involving five human demonstrators in ten
manipulation tasks with five trials per task. As a low-cost, open-sourced platform, we
also developed an intuitive interface that converts the raw sensor data into state-action data
for imitation learning problems. For learning-by-demonstration problems, we further
demonstrated our dataset’s potential by using real robotic hardware to collect joint
actuation data or using a simulated environment when limited access to the hardware.
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1 INTRODUCTION

Learning from human behaviors is of great interest in robotics (Argall et al., 2009; Kroemer et al.,
2019; Osa et al., 2018). Dexterous operation of various tools plays a significant role in the
evolution of human behaviors from ancient times (Kaplan et al., 2000) to modern civilization
(Brown and Sammut, 2011). For imitation-based manipulation learning, it is common to
collect behavior cloning data by directly observing the human hand (Christen et al., 2019) or
through human-guided robot demonstration (Chu et al., 2016). However, it is also widely
recognized that such dexterity in manipulation is also tightly related to the sense of touch
through the fingers (Billard and Kragic, 2019), challenging to model and reproduce with
current development in low-cost sensing solutions. For example, recent research in robotic
Jenga player (Fazeli et al., 2019) and Gelsight sensors (Yuan et al., 2017) shows the potential in
adopting active touch sensing for dexterous manipulation learning. However, a lack of
low-cost, efficient, shareable, and reproducible access to the manipulation data remains a
challenge ahead.
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The correspondence issue with the arm and hand between
humans and robots is another challenge yet to be resolved
(Dautenhahn and Nehaniv, 2002). The human muscular-
skeletal system provides a biological inspiration for modern
robot manipulators and grippers, but most are rigidly designed
with superhuman bandwidth for industrial purposes with a
structural simplification for efficiency and accuracy (Gealy
et al., 2019). When training with imitation learning
algorithms, the undesirable motions from demonstrations
and raw sensory inputs without proper embodiment are
also tricky to resolve, given the structural mismatch in arm
and hand between the robot learner and human teacher (Osa
et al., 2018).

While it is common to learn from human demonstrations
for robot learning, it remains difficult to track the dexterous
multi-finger motion for exact behavior cloning using 2-finger
parallel jaw grippers. Besides direct interaction with objects
through the fingers, humans are also skilled at operating tools
for dexterous manipulation. In this paper, we propose
DeepClaw 2.0 (Figure 1) as a data collection platform for
imitation learning, where a human teacher operates a pair of
modified kitchen tongs to perform object manipulation. Using
a single RGB-D camera (Intel RealSense D435i) as the only
sensor, we can track the tongs’ spatial motions with markers.
We also attached a soft finger network on each tip of the tongs
to infer unified physical interaction with objects using a vision-
based force-sensing method. These soft fingers can also be
fixed to parallel grippers, bridging the gap of structural
mismatch between human fingers and robot grippers for
learning. We collected comprehensive data of dexterous

human manipulation with tools directly transferable to
parallel grippers with the same set of fingers installed by
tracking how humans operate the tongs and how the fingers
deform. We also demonstrated how researchers could use this
platform by feeding the collected data to commercial robot
controllers to reproduce the manipulation, generating further
data on the actuator angle, velocity, and torque/current
incurred on each robot joint. For researchers with limited
access to real robot hardware, we also demonstrated the
possibility of motion reproduction in a simulated
environment using CoppeliaSim (previously known as
V-REP). We assumed the manipulation as a Markovian
process and converted all data collected to fit a standard
Markov Decision Process (MDP) model with an intuitive
user interface. The proposed DeepClaw 2.0 platform is
open-sourced with all configuration files and data hosted on
Github1 for shareable and reproducible research, aiming at a
low-cost benchmarking solution among the robot learning
community.

In the next section, we present the design details of DeepClaw
2.0, focusing on the data collection process. Section 3 presents the
experimental design, the collected dataset, and the reproduction
in real and simulated robots. Section 4 discusses some of the
findings and potentials of the proposed platform. Conclusion,
limitations, and future work are enclosed in the final section,
which ends this paper.

FIGURE 1 | Design overview of DeepClaw 2.0 for collection human manipulation data. As shown in (C): manipulation data collected from a human teacher who
operates a pair of modified kitchen tongs can be applied in imitation learning for robot in simulated or real environment. As shown in (A) an (B): RGB-D sensor (Intel
RealSense 435i is used in this paper) is fixed on the top, 700 mm away from the operating platform. Working space is a square with 600 × 600 mm. The origin of world
coordinates is set in the left-top corner located by a checkerboard.

1https://github.com/bionicdl-sustech/DeepClaw.

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 7872912

Wang et al. DeepClaw2.0 for Learning Human Manipulation

https://github.com/bionicdl-sustech/DeepClaw
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


2 THE DATA COLLECTION DESIGN OF
DEEPCLAW 2.0

2.1 Design Overview
The DeepClaw 2.0 aims at providing an open-sourced platform at
a low cost to collect human data for learning robotic
manipulation. As shown in Figure 2, the platform design
leverages: 1) Continuous 6D pose estimation using low-cost
cameras and simple markers for all state and action data of
tongs, 2) the use of soft finger networks with omni-directional,
passive adaptation for unified interaction by the humans and
robots, and 3) object manipulation with human operators
manually handling a pair of modified, 3D-printable kitchen
tongs, which is transferable to parallel 2-finger robot grippers.
The collected data involves the following stages of processing
before becoming useful for imitation learning or learning-by-
demonstration.

• Raw Sensor Data: There is only one sensor in DeepClaw
2.0, which is the low-cost Intel Realsense D435i with RGB-D
capability. Therefore, the raw sensor data for each example
are sequential images IN = {i0, i1, . . ., iN} of the task
environment during the human demonstration, where it
contains both RGB and depth image, recorded with
timestamps t ∈ {0, 1, . . ., N}.

• Pose EstimationData: We attachmarkers on various places
of the tongs, fingers, and objects and estimate their 6D poses
PN � {P0

i , P
1
i , . . . , P

N
i } and ΩN � {Ω0

j ,Ω1
j , . . . ,ΩN

j }
simultaneously by analyzing each recorded image, where
Pt
i , i � 1, . . . , 6 and Ωt

j, j � 1, . . . ,M are poses of markers
detected in corresponding image at timestamp t.Weuse Pt

i to
represent pose of marker with ID i in the tongs and in the soft
finger networks, andΩt

j to represent pose of marker with ID j
in objects. The pose vector contains translation and rotation
of the marker w. r.t the origin of the world coordinate system.

• State-Action Data: Based on the estimated pose data, we
can extract information such as the 6D pose of tool center
point of the tongs defined at the center of two tags on tongs
with an offset to the horizontal plane of the tongs, the
gripper’s opening width, and the deformation of soft finger
networks. Then, we convert the pose information to state
data based on its physical representations. A selected few
state data, especially those related to the soft finger
networks’ motion and deformation, will be used to
extract action data by taking their time derivatives. A
suggested way to utilize the pair of state-action data that
formulating manipulation learning tasks as a task family
described by a distribution of Markov Decision Processes
(MDPs), P(M), which follows the conventions used in
(Kroemer et al., 2019). To be more specific, each
manipulation Mi is fully defined by a tuple of
(Sr × Sei, A, Ri, Ti, γi) where Sr is the state of the tongs,
including the pose of the Ptcp and three distance variables
‖Pi

1 − Pi
2‖, ‖Pi

3 − Pi
4‖, ‖Pi

5 − Pi
6‖ describing the internal state

of the tongs; Sei is the environment state composed of the
tabletop setup Swi and the object states Ωi

1 ×/ ,× Ωi
j; A is

the action space of the tongs, which is inferred from the state
of the tongs; Ri is the reward function depending on the goal
of each task; Ti is time horizon i.e., the time steps in each
episode; γi is the discount factor. The left tuple elements are
not explicitly defined or computed.

• Post-processed Data: While one can already make use of
the above state-action data for learning, we further
integrated the capability for data reproduction and
collection with real and simulated robots for joint and
actuator data, which can be used for demonstration-
related learning algorithm development (Argall et al., 2009).

2.2 Hardware Mechanic Design
As a shareable and reproducible standardized robot cell, the
mechanical frame of DeepClaw2.0 uses aluminum extrusions
easily obtained from local shops or global suppliers such as
MISUMI Group Inc. In order to achieve ease of assembly, the
DeepClaw2.0 platform uses aluminum plates that are drilled with
a 2-by-4 hole array, and these aluminum plates are easily
machined from local shops. Using bolts and connectors to
assembly aluminum extrusions and drilled plates is convenient.
Other components such as flanges and wheels are also needed and
easy to assembly. All the components are listed in the Figure 3 and
Table 1, and more details are shown in Supplementary Figure S1.
In order to provide a better light environment for data collection
using cameras, we added two lighters fixed by plates. Also, we use
some machined plates as the base of robot arms, which show the
potential of DeepClaw2.0 as a data collection platform and a
system that can realize the process from data collection to use.
The top-left corner of Figure 3 shows the detail of the robot arms,
which using DeepClaw as a base to perform tasks such as
implementing a trained learning model. The center and top-
right of Figure 3 show the ability of DeepClaw to collect data
and use data simultaneously. The bottom-right of Figure 3 shows
the details of the gripper for data collection.

2.3 From Raw Sensor Data to Pose
Estimation Data
The raw sensor data consist of color, and depth images with
timestamps streamed at 30 fps from Intel Realsense D435i. Most
researchers utilized some optical motion tracking system to
extract human manipulation data (Kolahi et al., 2007).
Commercialized high-precision products usually involve a
multi-camera setup and complex system configuration,
becoming expensive for shareable and reproducible research.

Pose estimation and tracking are the key factors affecting the
performance of a motion capture system. We compared three
commonly used marker detection algorithms using the same
Realsense D435i camera. In the experiments, a 3D-printed
L-shape board was mounted on the tool flange of UR10e. A
3 cm × 3 cm ArUco tag, a 4 × 5 checkerboard with grid size
0.6 cm, and a 3 cm × 3 cm AprilTag were attached to the L-shape
board’s center, respectively. UR10e repeated the same trajectory
while we tracked the markers. We sampled ten fixed waypoints
along the trajectory and calculated the detection success rate, the
average computation time, and the average rotational error (Suzui
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et al., 2019), as shown in Table 2. The trajectory was repeated ten
times for each marker. Our results show that the AprilTag
detector in ViSP is the most reliable method among the three,
with a 100% detection success rate with the least rotational error
at 0.36 radian. It also performed consistently in terms of efficiency
with the least variations. The AprilTag detector in ViSP is the only
method utilizing the extra depth information provided by the
Realsense D435i, which might contribute to its superior
performance among the three methods tested.

As a result, we adopted the AprilTag as the marker for our
modified tongs design, as shown in Figures 4B,C. A set of the soft
finger networks with omni-directional adaptation is also adopted,
with further technical details explained in (Yang et al., 2020a,b; Wan
et al., 2020). Both the tongs and soft finger networks are 3D printable.
Three tags are fixed on each armof the tongs, with one is near the end
of the arm and two attached to the back of each soft finger network.
All six tags can be uniquely identified and localized, producing a set of
marker poses Pt

i where i = 1, . . .6 and t is the time sequence. The tags

FIGURE 2 | The data collection pipeline of DeepClaw 2.0 is shown in (A), which includes raw sensor data (green), pose estimation data (light yellow), state-action
data (orange), and post-processed data (light gray). Raw data consists of three types of information: tag data (ID number and size) as the prior information, RGB image,
and depth image captured by a single fixed camera (Intel RealSense D435i in this paper). Low-level features are collected as pose estimation data, include detected
corner point and 6D pose of the marker. State-action information, constructed from the above low-level features, reveals the motion of both objects and tongs
during the manipulation task. Two typical ways to use structured data bags are shown in (B). The green branch indicates how the real robot reproduces the trajectory
recovered from data bags, and the orange branch demonstrates steps to regain manipulation tasks.

FIGURE 3 | DeepClaw2.0 Station: (A) 3D view, (B) robot arm explosion view, (C) details about components for data collection.
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were also attached to the objects so that we can keep track of the
object poses Ot

j where j iterates over the object ID.
We also developed an intuitive graphical interface, as shown in

Figure 4A, which can be used to visualize the real-time data
streaming during the data collection as well as to examine the
collected data.

2.4 Deformation Estimation via Passive
Perception
It is essential and meaningful to estimate the contact behavior
during manipulation. For example, in the task of grasping soft

objects or objects of unknown weight, data generated by the
interaction between humans and the environment during the
teaching process can provide the robot with more abundant
information, such as the closing distance of gripper or force
adjustment strategy (Yuan et al., 2015). The tactile sensor can
provide interactive information, which is ignored by the camera,
for robot operations. However, the formation of data provided by
the different tactile sensors is various and highly related to its
mechanical design. It is not easy to generalize tactile sensing
across different types of sensors. To fill this gap, DeepClaw 2.0
uses a low-cost RGB-D camera and provides a visual detection
algorithm to estimate the contact deformation of the soft finger

TABLE 1 | Bill of materials for DeepClaw 2.0.

Number Type Quantity Number Type Quantity

1 AluExtru:HFS8-9090-1080-TPW 2 10 CameraFlange 2
2 AluExtru:HFS8-9090-630-TPW 12 11 Handle-GHHD28-A 4
3 AluExtru:HFS8-9090-450-TPW 12 12 TableTop-630 × 540 2
4 AluExtru:HFS8-4545-250-TPW 4 13 RobotArm-BaseBoard 2
5 AluExtruCover:LEC10-9090 8 14 BaseBoardConnector 1
6 Wheel-GD-80F 12 15 Triangle-Block 2
7 FlangeFoot 12 16 LED-Bracket 2
8 GHPJ10-4545 8 17 LED-Bar 2
9 AluPlate-2×4 46 — — —

TABLE 2 | Marker comparison for 6D pose estimation.

Method Detection
success rate (%)

Average
computation time (s)

Average rotational error
(rad)

Average
position error (cm)

Aruco Minichino (2015) 32 0.16 (0.17) 1.60 (0.03) 0.292 (0.162)
Checkerboard Minichino (2015) 90 0.42 (0.12) 0.96 (0.19) 1.005 (0.628)
AprilTag in ViSP (Marchand et al. (2005) 100 0.20 (0.01) 0.36 (0.12) 0.085 (0.057)

Bold values represent the better performance.

FIGURE 4 | Key components in human manipulation: (A) Shows the rendered graphic user interface in DeepClaw 2.0, consists of real-time RGB data flow
(highlighted by the red rectangle), low-level features (highlighted by the yellow rectangle), and high-level state-action information (highlighted by the green rectangle). (B)
Shows the similarities between the assembled tongs and an OnRobot RG6 gripper, some key parameters are pointed, and in (C), six tags from the AprilTag 36h11 family
used in this paper are shown.
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network passively. By capture the motion of markers that are
fixed at the finger, the contact behavior is recognized. We
conducted experiments on ten typical manipulation tasks and
compared the deformation of soft finger networks when
interacting with objects of different shapes, such as cube and
orange, and objects made of soft or solid materials, such as sponge
and can.

2.5 Optional Collection of Post-processed
Data
To verify the reproducibility of the structured data collected by
DeepClaw 2.0, we transfer the collected data into the controller of
a physical robot arm and a simulation environment. This post-
processing step enables us to obtain robot state data about the
robot joint/actuator. Based on the action information in collected
data, we feed the smoothed trajectories in Cartesian space
generated from human manipulators to the physical robot
arm. The robot arm obtains the inverse kinematic solution
and executes the motion planning by shadowing the human
manipulations. The exact reproduction process can be done
with simulated robot arms. Thus, the data can be used for
robot learning-by-demonstration of specific tasks in the real
world and in simulation.

3 EXPERIMENTS AND RESULTS

3.1 Experiment Setup and Procedure
We divide a manipulation task into five phases: The initial state,
picking, manipulation, placing, and target state, where
manipulation refers to robot actions other than picking and

placing. By exploring the setup of objects and whether to
execute picking, placing, or other manipulations, we designed a
family of ten tasks, as summarized in Figure 5 and Supplementary
Table S1. From the Yale-CMU-Berkeley Object and Model Set
(Calli et al., 2015), we selected the small wooden cubes of
different colors and a few sample objects to represent two
levels of object complexity. Each object is attached with a
unique AprilTag for pose estimation. For each object set, the
five tasks in Figure 5A from left to right differ in manipulation
complexity. The origin of the world coordinate is at the
bottom-right corner of the checkerboard with the z-axis
facing upward. All the collected pose data are transformed
relative to the world coordinate.

We invited five operators, asking each to repeat each of the ten
tasks in five trials. As a result, we collected a dataset of 250 task
executions in total. Each task execution data consists of a
sequence of color and depth images, one pack of a structured
data bag, and one video of the manipulation process recorded by
another camera. The researcher starts the experiment by
launching the data visualization interface. The operator is
asked to stand in front of the tabletop holding the tongs in
the right hand. After receiving the starting signal from the
researcher, the operator starts executing the manipulation task.
Once completed, the operator notifies the researcher to stop the
recording in the user interface.

3.2 Experiment Results
We performed a mean filter to reduce the disturbance during the
data collecting process. A sample statistical overview of the data is
visualized in Figure 6. The statistical analysis provides a glimpse
of the characteristics in each manipulation task, where different
phases of a single task can be clearly identified. The trajectory

FIGURE 5 | We defined 10 manipulation tasks shown in (A). This paper uses two objects families: four red and two green wooden cubes as one set and four
common objects from YCB as another set. We stress two states and three operations in one manipulation task: initial state, target state, picking, pushing, and placing.
The details of different initial states and target states are listed in (B,C). The two families of objects from YCB are shown in (D): A set of six cubes; a set of the orange,
banana, sponge, and can. The setup of tabletop is shown in (E).
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visualization provides support for the reproduction experiment in
real and simulated robots.

3.3 Experiment With Real and Simulated
Robots
We reproduced the trajectory of a human operator executing task
1. Then, do the reproduction with UR10e. The robot states,
including joint angle, joint current, and joint velocity, were
recorded during the process. These experiments show that the
structured data collected from different manipulation tasks can
be reproduced by the robot arm in the same data process.

We also reproduced the same task in simulation using
CoppeliaSim (Freese et al., 2010). The object’s pose information
was utilized to render an initial state of the objects cloning the real
scene. The simulated Franka Emika arm with its 2-finger gripper
then tried to follow the trajectory of a human operator. As shown
in Figure 1, the simulated robot can reproduce task 1 recorded
with a human operator. Please refer to the Github page for further
details on the motion reproduction.

4 DISCUSSION

4.1 Dexterous Object Manipulation Through
Operating Tools
Tracking human hand motion can be challenging and expensive
(Billard and Kragic, 2019). Recent research already demonstrated

success in tracking refined and real-time hand motion for training
advanced manipulation skills using physical (OpenAI et al., 2019) or
simulated robots (Han et al., 2018). Besides a multi-camera motion
capture system, data gloves are another alternative (Sundaram
et al., 2019; Dillmann, 2004), but may suffer from interfering with
the natural motion and touch feeling of the human hand. Even
when such data becomes cost-effectively available, which is yet
to be the case, there remains another challenge in the availability
of robotic hands matching the human’s capability at a lower
cost. While many multi-fingered robot hands (OpenAI et al.,
2019; Zhou et al., 2019) are available, there remains a gap
between technological maturity and cost-effectiveness.

This paper proposes a different perspective by collecting large-
scale object manipulation data when human teachers are operating
tools. Specifically, we adopt tongs as the tool of interest, commonly
found in life and workplaces for food preparation or material
handling. A convenient feature of the tongs is its two-fingered
design, which is structurally similar to robotic grippers with
parallel fingers. Although most tongs adopt a pivot or scissor
mechanism, they usually come with “long arms terminating in
small flat circular ends of tongs2,” resulting in a convenient
approximation to a parallel motion at a low cost. Our results
demonstrate the potential to collect dexterous manipulation data
from such configuration, which can be translated for imitation
learning at a low cost in data collection.

FIGURE 6 | Experiment results and analysis of the collected data. We plot the trajectory of the third attempt of task 2, task 3, and task 8 from a human operator in
(A–C). Operations (pushing, picking, or placing) and (initial or target) state can be easily distinguished by observing the motion trajectory. Sub-figures from (D) to (F) at the
bottom line represent the corresponding acceleration sequence with and without smoothing. Motion-related data, such as position, velocity, and acceleration, provides
a quantifiable indicator of operations.

2https://en.wikipedia.org/wiki/Tongs.
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4.2 Vision-Based Force Sensing Using Soft
Finger Network
We introduce a pair of soft finger networks to generate pseudo-
force data about the physical interaction between the tongs and
objects to keep the system simple, cost-effective, and versatile in
data collection. Such a soft finger network provides an
overconstrained grasping solution through compliant interaction
at a low-cost (Yang L. et al., 2020; Wan et al., 2020), which can be
leveraged through optical methods for non-contact force-sensing
after calibration. Recent research demonstrated the possibility of
embedding optical fibers inside such a simple finger network for
tactile sensing in grasping (Yang Z. et al., 2020).

In this paper, we use markers instead of unifying the raw
sensory data in image format and tracking the markers to collect
the motion and deformation data of the soft finger when
interacting with the objects, as shown in Figure 7. When both
the robot learner and the human teachers use the same soft finger
networks, we can directly use the deformation of the fingers as the
pseudo-force data of physical interaction. If necessary, we can
calibrate the soft finger network’s stiffness to calculate the specific
interaction force based on the measured deformation (Liu, 2020;
Yang, 2020). Since these soft finger networks can be conveniently
installed on the arms of the tongs and the robotic grippers, we can
maintain a consistent interface of physical interaction. Such a
vision-based sensory mechanism holds the potential to reduce the
hardware cost and system complexity significantly, yet
maintaining a consistent level of data robustness and
conformity for training and deployment.

4.3 Feasibility of the Collected State-Action
Data
The primary purpose of the proposed DeepClaw 2.0 platform is to
facilitate the large-scale data collection for training models for
manipulation learning algorithms, which is usually fitted to an
MDP model. The DeepClaw platform facilitates a streamlined
pipeline that encodes the sequential Raw Sensory Data in time-
series image formats into State-Action Data with physical
meanings for manipulation learning. Researchers can directly
use State-Action Data by introducing specific transition
functions, reward functions, and discount factors to develop
algorithms based on MDP models for imitation learning.

For researchers interested in learning-by-demonstrations, if a
physical robot is available, we also demonstrated the feasibility of
collecting actuator data in motor current and joint data in angular
position and velocity by feeding the collected State-Action Data to the
controllers using a UR10e robot. Even if robot hardware is unavailable,
we also demonstrated the feasibility of using a simulated Franka Emika
robot to achieve a similar purpose, which may suffer from a reduced
richness in data variety, but an enhanced benefit in reproducing the
task with variant objects.

5 CONCLUSION

In this paper, we proposed the DeepClaw 2.0 platform with a
low-cost RGB-D camera to collect the training data of
object manipulation by tracking the spatial motion and

FIGURE 7 | The contact information of grasping five objects((A): cube, (B): orange, (C): can, (D): sponge, and (E): banana) and no object (F)) five times. To
emphasis the differences in interaction, we record subtraction of every two values of distance. d1 and d2 reveal the deformation of soft finger networks. d3 is linear and
proportional to the closing distance of tongs. Therefore, the subtraction of d1 and d3, or d2 and d3, may provide information of geometry (lower value when grasped
means smaller size of the object) and material (curve or straight line at valley reveals soft or solid material). The precise prediction will be exploited in the future.

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 9 | Article 7872918

Wang et al. DeepClaw2.0 for Learning Human Manipulation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


deformation of a pair of specially designed soft finger networks
with omni-directional adaptation. These fingers are used as a
universal agent of physical interaction for dexterous objects
manipulation, either by humans when operating a pair of tongs
fixed with these fingers or by a robot with a common parallel jaw-
gripper with such fingers installed. We can collect the pseudo-force
interaction data between the fingers and objects using vision-based
force-sensing through these soft finger networks. We presented an
intuitive interface to manage the State-Action Data collection
process for training imitation learning algorithms. We
demonstrated a viable solution to collect further robot state and
action data, which can be alternatively used for research on
learning-by-demonstration.

This study is limited to a performance benchmark of the collected
data for training manipulation learning, which will be studied in
future work. As the RGB-D camera is the only sensor used, the
quality of the collected data relies heavily on the performance of the
camera used (Intel RealSense D435i). If higher resolution is
necessary, systems such as Photoneo MotionX (Wan and Song,
2020) could be a potential alternative for high-quality point clouds
with gray-scaled images, but at a much higher price. The vision-
based force-sensing capability can be further improved for sensitivity
and accuracy. We are currently working on an alternative design by
embedding cameras inside the soft finger for more sensitive sensing,
which will be addressed in another paper.

The future work of this study mainly aims at a more
comprehensive system design towards a low-cost, open-
sourced platform for robot manipulation learning research. As
shown in Figure 1 right, the full design of DeepClaw 2.0 also
involves a second robot station with a lobster-inspired robot with
soft fingers on a parallel gripper. Recent research by the Berkley
Open Arm project (Gealy et al., 2019) proposed a promising
design paradigm in this direction for robot hardware that
“enables useful automation in unconstrained real-world human
environments at low cost”.
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