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Learning-Based Optoelectronically Innervated Tactile
Finger for Rigid-Soft Interactive Grasping
Linhan Yang , Xudong Han , Weijie Guo, Fang Wan, Jia Pan , and Chaoyang Song

Abstract—This letter presents a novel design of a soft tactile
finger with omni-directional adaptation using multi-channel op-
tical fibers for rigid-soft interactive grasping. Machine learning
methods are used to train a model for real-time prediction of force,
torque, and contact using the tactile data collected. We further
integrated such fingers in a reconfigurable gripper design with
three fingers so that the finger arrangement can be actively adjusted
in real-time based on the tactile data collected during grasping,
achieving the process of rigid-soft interactive grasping. Detailed
sensor calibration and experimental results are also included to
further validate the proposed design for enhanced grasping robust-
ness. Video: https://www.youtube.com/watch?v=ynCfSA4FQnY.

Index Terms—Grasping, optical fiber, tactile sensing, soft
robotics.

I. INTRODUCTION

DATA-DRIVEN grasp learning has been a research field
of growing interest in the past decade [1] with many

literature contributing to the use of computer vision for grasp
prediction [2]–[4], high-resolution tactile sensing [5], [6], and
advanced gripper design [7], [8]. Many dataset have been pub-
lished to support grasp learning using computer vision [3],
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Fig. 1. Overview of the proposed system design with omni-adaptive tactile
fingers for rigid-soft interactive grasping learning. Left shows the system inte-
gration of a reconfigurable gripper with the proposed tactile fingers on a UR10e
robot. Right shows the workflow of the proposed rigid-soft interactive grasping
strategy.

[9], model-based synthetic methods [4], [10], or direct grasp
trials [2], [11]. However, vision is not the only part of the stimuli
humans rely on while manipulating objects. Tactile information
plays an important role when humans are executing dexterous
manipulation, especially when visual information is not precise
or fully available [12]. Recent research on using vision sensors
for tactile sensing [5], [6] leverages material properties such as
transparency and softness to capture refined detail of physical
interaction. Proprioception is another way to collect tactile infor-
mation to infer data of physical interaction between the finger
and the objects, where soft finger with compliant materials is
often considered as a feasible choice of design [13], [14].

This letter proposes a real-time policy for robust grasping, as
shown in Fig. 1, using tactile data collected from a novel design
of optoelectronically innervated tactile finger for the rigid-soft
interaction between rigid objects and soft fingers.

A. Soft Robotic Fingers and Grippers

Robotic fingers and grippers with a soft design have shown
great potentials in grasping [15]. By leveraging material soft-
ness, they usually feature passive compliance [16]–[18] and
underactuation [7], [19], [20], leading to a simple control during
grasping. Inspired by the Fin-Ray Effect, [16] proposed a novel
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compliant lattice-structure fingers to enhance grasp robustness
and has been widely used in [16], [21], [22]. Most of these
grippers have only one actuator, and the adaptive nature of such
finger design can quickly achieve form closure of the target
object. Grippers with reconfigurable finger patterns is another
solution to enhance grasping robustness. Dollar et al. [7], [19]
proposed a series of the under-actuated grippers, which could
reconfigure between power-grasping, spherical-grasping, and
lateral-grasping modes. However, all the control algorithms of
different grasping models are open-loop and hard-coded, which
may not be applicable for unstructured interaction.

B. Proprioceptive Sensing

Stretchable sensors such as soft resistive and soft optoelec-
tronic ones have been embedded in soft robotic fingers to sense
the interaction [13], [14], [23]–[25]. Zhao et al. [23] proposed
a prosthetic hand using optical waveguides for strain sensing,
which could be used to sense the shape and softness of selected
objects. Meerbeek et al. [13] presented an elastomeric foam with
30 optical fibers internally illuminated. They trained this foam
sensor system with a machine learning method to detect bending
and twisting. Thuruthel et al. [14] proposed a human-inspired
soft pneumatic actuator with embedded soft resistive sensors
for real-time modeling of its kinematics using recurrent neural
networks. A review of the above research shows the great
potentials of the soft fingers and grippers with proprioception.
However, it remains a challenge to apply these novel designs to
robotic grasping or dexterous manipulation.

C. Proposed Method and Contributions

This letter is a continuation of our earlier work with the
omni-adaptive soft finger for rigid-soft interaction learning [17],
finger configuration learning [18], and optical fiber-based grasp
sensing [26]. In this letter, we propose a sensorized design
of the omni-adaptive soft finger using multiple optical fibers
embedded with friction enhanced soft surface. Tactile data such
as normal force, torque, and contact position can be learned
based on the proposed design, which is further integrated into a
reconfigurable gripper to achieve rigid-soft interactive grasping
with enhanced robustness. The contributions of this letter are
listed as the following:

1) Proposed an integrated design of the omni-adaptive soft
finger with enhanced finger surface and multi-channel
optical fiber for proprioceptive, tactile sensing.

2) Investigated a detailed characterization and calibration
of the tactile finger’s sensing capability using machine
learning.

3) Achieved real-time sensing of multiple tactile data, such
as normal force, torque, and contact position, with the
proposed finger design.

4) Integrated the proposed tactile finger in a reconfigurable,
three-finger gripper that could grasp and adapt to the target
object online based on real-time tactile data.

In the rest of this letter, Section II explains the problem for-
mulation of rigid-soft interactive grasping and proposed method.

Section III conducts sensor calibration through machine learn-
ing. Experimental results and discussion are enclosed in section
IV and V. Final remarks are enclosed in section VI.

II. METHOD

A. Problem Formulation

The research problem of interest is investigating the potentials
of tactile sensing for robust grasp learning by leveraging soft
robot designs with optoelectronic sensing. We organize this
research by building upon our earlier research on a soft robotic
finger design with omni-directional adaptation [17], [18], [26].
� We first discovered the potentials of rigid-soft interactive

learning with such finger design, where grasp training
could be achieved using much less data when data of soft
finger picking up rigid objects are fused in the training
dataset [17].

� We then explored the optimal number and arrangement
of soft fingers for robotic gripper using a learning-based
method and found that three-finger configuration with a
centric arrangement is among best ones [18].

� Recently, we further improved the soft finger design by
embedding optical fibers inside to enable scalable tactile
sensing for object classification during grasping [26].

In this letter, our goal is to optimize grasp quality by adjusting
the finger configuration online based on the real-time tactile
information collected from the soft fingers. The contact between
the gripper and the object during interaction is assumed as planar.
We simplified this problem by discretizing the contact plane into
several or a single point. The single finger contact model and
multi-finger grasping model are discussed, respectively.

1) Contact Model of a Single Finger: We assume that 1) the
grasped object is light such that its weight is neglected in the
balancing equation, and 2) the torques along the X- and Y-axis
are neglected for their little influence on the overall grasping
performance.

In the simplified single finger case illustrated in Fig. 2, the
contact force is discretized as F = (f1, f2, . . ., fn). In the X-Z
cross section shown in Fig. 2(a), the resultant force of contact
is capable of transmitting a normal force component Fx > 0, a
frictional force componentFz and a balancing torque component
Ty along Y-axis, which is neglected under our assumptions. In
the X-Y cross section shown in Fig. 2(b), the resultant contact
force is capable of transmitting a normal force component Fx >
0, a frictional force Fy and a balancing torque component Tz

along Z-axis.
According to Coulomb friction model, when object is grasped,

we have:

||Ft|| ≤ μFn, v = 0 (1)

where μ is the friction coefficient and v is the sliding velocity
of object. If the sliding velocity is zero, then the magnitude
of the tangential friction force is less than or equal to μ times
the normal force, which is non-negative. As shown in Fig. 2,
the normal force Fn = Fx and the tangential frictional force
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Fig. 2. Schematic of a single finger contact in (a) X-Z cross section and
(b) X-Y cross section.

Fig. 3. Schematic of grasp model. Upper: Conventional configuration. All
with circular configuration; Bottom: Interactive grasping which transition be-
tween different configuration to conform the surface of objects (d) Circular
Configuration; (e) Lateral Configuration; (f) Parallel Configuration. Note: FT

denotes force provided by actuator which is a constant and same notation is
adapted at each contacts.

Ft = Fy + Fz . Then we get:

||Fy + Fz|| ≤ μFx, v = 0 (2)

2) Grasp Model of Multiple Fingers: Based on our earlier
research [18], different number and arrangement of fingers
significantly influence the grasping outcome and robustness of
the gripper. For example, when the gripper has three fingers, we
can model its grasping with three contact areas, with one for
each finger, as illustrated in Fig. 3.

According to the Newtonian mechanics equilibrium equation,
when sliding velocity v = 0, we have:

∑
i

Fn,i +
∑
i

Ft,i + Fext = 0, (3)

Fig. 4. The design and fabrication process of the optoelectronically innervated
soft tactile finger: (a) finger frame; (b) finger frame with the fibers (orange
transparent material is used instead to visualize the transparent fibers clearly in
the figures); (c) finger frame with silica gel skin; (d) we pull out the optic fiber to
leave a cavity in the middle of finger; (e) fabrication process of the black silica
gel skin; (f) the cavity in the sensitive area.

and ∑
i

Tz,i + Text = 0 (i = 1, 2, 3) (4)

From Eq. (1), we have

||Ft,i|| ≤ μFn,i (i = 1, 2, 3) (5)

B. Optoelectronically Innervated Soft Tactile Finger

In our recent work [26], we leveraged the structural space
within our earlier finger design [17], [18] by introducing optical
fibers inside the soft structure to achieve tactile sensing for a
limited object classification. In this letter, we systematically im-
proved the finger design, as shown in Fig. 4, with much enhanced
sensor reliability, tactile capability, and grasping robustness.
Major enhancement include
� Added finger surface for enhanced contact friction while

preserving its omni-directional adaptation;
� Multi-channel optical fingers on the main side of grasping

with an integrated design and enhanced tactile sensing;
� Enhanced fabrication process for improved reliability and

consistence performance with reduced cost and complex-
ity.

� Maintained compatibility with unstructured environmental
changes as before, even with the enhanced design features.

In this new finger design, five optical fibers form a sensor array
inside the newly introduced finger surface and the soft finger
structure to measure the finger deformation during grasping, as
shown in Fig. 4(b). The luminous flux loss correlates to the soft
finger’s curvature, which makes the optical fiber a feasible choice
to obtain the soft finger’s deformation. Five LEDs are placed
at the transmitting ends of the optical fibers as the luminous
transmitter, and five photoresistors are placed at the receiv-
ing ends to estimate the output luminous intensity. To reduce
the ambient light’s impact and get enough luminous flux, we
chose 520-525NM LEDs and 520-550NM photoresistors, whose
wavelength segments are more concentrated and matching. The
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Fig. 5. CAD model of gripper: (a) three fingers each with two degrees of
freedom, (b) three different configurations for grasping.

result is a significant increase in the signal-to-noise ratio for the
required sensing.

Moreover, the array of optical fibers were placed on the finger
framework and covered with a layer of skin made of black silica
gel for isolation from the environment, as shown in Fig. 4(c),
contributing to the increased signal-to-noise ratio. We further
left a cavity in the middle segment of the contacting surface
where the major deformation occurs to improve the optical
fiber’s sensitivity [24]. As shown in Fig. 4(d)(f), each one of the
five optical fibers was cut into two segments and is discontinued
at the cavity segment highlighted in Fig. 4(f).

The fibers we used are commercial optical fibers of soft
PMMA manufactured by EverhengFiber. The skin is made
of Smooth-On EcoflexTM 00-30 silica gel, whose strength is
suitable for our purpose. However, this silica gel is originally a
milky white translucent liquid, which is later mixed with black
pigment at a ratio of 20:1 to block the ambient light effectively.
Moreover, the silica gel skin is set 3 mm away from the finger’s
outer surface to increase the finger surface texture and enhance
the grasping effect. Fig. 4(e) shows the details of the black silica
gel skin’s fabrication process.

Let I0 denotes the baseline luminous intensity without any
deformation. With the current output luminous intensity I , the
luminous flux loss in decibels through the optical fiber is then
described as

a = 10 log10(I0/I) (6)

By this definition, the output loss a is 0 without deformation and
less than 0 when interacting with the environment.

C. Reconfigurable Gripper Design of Three Fingers

Building on our earlier results regarding the optimal number
and arrangement of fingers for robotic grippers [18], we designed
a three-finger gripper for this study, as shown in Fig. 5(a).
Each finger has two Degree-of-Freedoms (DoFs), with one
(ROBOTIS Dynamixel XM320) actuating the finger’s opening
and closure, and the other (ROBOTIS Dynamixel MX64AT)
redirects the fingers’ orientation about the Z-axis. Both actuators
feature a fully integrated motor with relatively low price in a
compact form factor and are daisy-chained to a 12 V power
supply. High-level Python API provided by Dynamixel SDK

is used for communication between the gripper hardware and
host computer, providing information on the current position,
the goal position, and the torque limit for adjusting the finger’s
stiffness.

As shown in Fig. 5(b), this gripper exhibits three-finger con-
figurations: 1) Circular Configuration (i.e., three fingers circu-
larly arranged, facilitating the grasp of a spherical object); 2)
Lateral Configuration (i.e., two fingers symmetrically arrange
with the third one placed such that the proximal joint axis is on
the mid-plane of the others, facilitating more precise grasping);
and 3) Parallel Configuration (two fingers on the same side and
parallel to the third finger on the other side, facilitating the
grasp of cylindrical objects). Such a gripper can adapt to various
geometric features of the target objects using the three typical
configurations.

D. Rigid-Soft Interactive Grasping

The objective is to find a robust grasp policy that maintains the
equilibrium equation under external disturbances. We assume a
constant Fn,i with no external disturbance,

∑
i

Ft0,i = −
∑
i

Fn0,i (7)

Then, the anti-disturbance ability could be defined as the
minimum of Fext, which could break the equilibrium state:

Fext = max
∑
i

Ft,i −
∑
i

Ft0,i (8)

where maxFt,i = μFn,i. To maximize anti-disturbance ability,
we should minimize Ft0,i. and maximize Fn,i.

As shown in Fig. 3, when grasping with a conventional
configuration,

Fn = FT cos θ, (9)

where FT is the constant force provided by actuator and θ is the
angle betweenFT and the normal direction. During this process,
the soft finger is usually twisted and FT is decomposed, which
causing a smaller Fn and a larger Ft.

Grasping with an interactive configuration actively adapted
to the surface of the target objects. During the adjustment, Fn

is increased to FT and Ft is decreased, which is precisely the
objective of our optimization policy. In the actual grasping,
minimizing twist means minimizing Tz by changing the gripper
configuration to adapt to the object surface. This optimization
process is shown in Algorithm 1, called Rigid-Soft Interactive
Grasping.

III. CALIBRATION

A. Data Collection

We push the soft finger with a 3D-printed indenter in the
sensitive area, where the major deformation occurs, as shown
in Fig. 6. Ten contact points along the horizontal direction were
selected, and the feed amount was 10 mm at most for each contact
point. Contact point (pindex), feed amount (mindex), intensity
of the transmitted light (a1, a2, a3, a4, a5), force and torque
information (Fn, Tz) were gathered in this process. Force and
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Algorithm 1: Rigid-Soft Interactive Grasping.
Input:Initial Configuration θi, Torque Tz,i, Decay Rate
γ, Threshold δ, Finger ID i = 1, 2, 3.

Output:Optimized Configuration θ̂i.
1: Obtain Initial Configuration θi, Torque Tz,i

← InitialGrasp
2: function Grasp Optimizationθi, Tz,i

3: parallel for each finger do
4: while Tz,i > δ do
5: θi = θi − γ ∗ Tz,i

6: end while
7: end for
8:
9: returnOptimized Configuration θ̂i

10: end Function

torque data were collected from an OnRobot HEX-E v2 mounted
on the soft finger’s bottom. We collected 1000 data points, and
the scatter plots are shown in Fig. 6. The force range is from 0
to 6 N, and torque is from -0.05 to 0.05 Nm. In addition to the
force and torque prediction, these data could also be interpreted
to infer the horizontal direction’s contact position.

Since our tapered fingers have structural asymmetry in the
vertical direction, the bend occurs more efficiently when the
force is applied to the middle segment of the finger. Under
constant normal force, the finger’s deformation varies as the
contact point moves along the vertical direction. Therefore, we
could identify the contact position in the vertical direction under
a constant normal force. To achieve this goal, we gathered
another set of 100 data points at ten contact points along the
vertical direction with the same normal force of 3˜N .

B. Force and Torque

To infer the force and torque information, we used the Ma-
chine Learning method [27] instead of deriving a theoretical
model since the latter would be rather tricky due to the com-
plexities of the soft sensor. We chose four widely used regression
models, namely Linear model, Decision Tree, Random Forest,
and SVM, as our candidates. The dataset of 1000 data points
is split into a training dataset of 800 data points and a test
dataset of 200 data points. First, we trained the selected four
models with the training dataset, respectively. Then, 5-fold
cross-validation was used to evaluate the performance and to
avoid over-fitting [28]. Finally, the well-trained models were
tested on the test dataset. The meta parameters of the models
were selected using the gird search toolbox provided by scikit-
learning.

We used the commonly used metric, Root Mean Square Error
(RMSE), to measure the accuracy of trained models. RMSE is
the standard deviation of the residuals, reflecting the model’s
accuracy. And the equation is

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (10)

Fig. 6. Data collection and a summary of collected data. Top: Data collection
setup; Bottom: histogram and scatter plots of the calibration experiment data.

The results are shown in Table I. SVM is the best model
for force prediction and the meta parameters are kernel: rbf, C:
1000.0, and gamma: 0.1. The best model for torque prediction
is Random Forest, and the meta parameters are bootstrap: False,
max features: 2, and n estimators: 100.

C. Contact Position

We used the same dataset and models for predicting the con-
tact position in the horizontal direction as the force prediction.
For that in the vertical direction, we used the dataset of 100
samples to train and test the four models. The results in Table II
show that random forest models perform best for both directions.
The Metaparameters of the best model for horizontal direction
are bootstrap: False, max features: 3, n estimators: 100. The
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TABLE I
FORCE AND TORQUE PREDICTION RESULTS OF THE OPTOELECTRONICALLY

INNERVATED TACTILE FINGER

∗ Root Mean Square Error (RMSE), whose expression is shown as Eq. (10).
∗∗ Not available, unnecessary.

TABLE II
CONTACT POSITION PREDICTION RESULTS OF THE OPTOELECTRONICALLY

INNERVATED TACTILE FINGER

Fig. 7. Performance prediction as the number of the optic fibers in the soft
sensor reduces.

Metaparameters for vertical direction are bootstrap: False, max
features: 5, n estimators: 3.

D. Optimal Number of Optical Fibers

To examine the relationship between the number of the optic
fibers and the prediction performance, we experimented using
only a subset of the five features (intensities of the five optic
fibers). We calculated each feature’s importance to the final
prediction using the forests of trees toolbox and removed the
features in a sequence order from less important to more im-
portant. Importance of the five features (a1, a2, a3, a4, a5) are
0.254, 0.055, 0.199, 0.353, 0.139 for force prediction and 0.359,
0.152, 0.065, 0.113, 0.309 for torque prediction. The impacts of
the feature reduction on the model performance are shown in
Fig. 7.

IV. EXPERIMENT

A. Real-Time Tactile Sensing & Prediction

To test the models’ generalization capability, we controlled
the robot arm to push the soft finger randomly and predicted
the force, torque, and contact position in real-time. Note that
the contact point candidates were randomly selected in the
continuous range along the horizontal direction instead of 10

Fig. 8. Real-time prediction of the force, torque, and contact position. Red
line: Prediction value; Green line: Ground truth provided by the OnRobot F/T
Sensor.

discrete points as in the calibration procedure. Similarly, the
feed amounts were randomly selected in a continuous range.
The results of the real-time prediction are shown in Fig. 8.

B. Rigid-Soft Interactive Grasping

We applied our soft sensor to a simple grasping process. Three
identical soft fingers were fabricated and calibrated. Algorithm
1 is used in the grasping experiment. First, an initial grasp was
conducted with a default circular configuration. The fingers
interacted with the target objects, and deformations occurred.
The fingers sensed the deformations, which were interpreted
to infer force and torque information. The gripper adjusted its
configuration with a decay rate of γ (10 000 is used in this
letter) based on the tactile information and adapted to the target
object’s shape. This adjustment process was repeated until the
soft finger’s torque, namely the twist of deformation, is less
than a threshold (0.002 is used in this letter). Finally, the grasp
configuration was optimized, and the robot would try to pick
the object up. The target objects were fixed on the table so
that we could examine the grasp robustness. The force along
the vertical direction while the robot attempted to pick up the
object was recorded. A larger value of the vertical force indicates
enhanced grasping robustness. The experiment setup is shown
in Fig. 9(a). The conventional grasping with the default circular
configuration was also conducted as a benchmark.
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Fig. 9. Comparison between the conventional grasping (left) and interactive
grasping (right) for four objects. Conventional grasping provides (b) 12.9 N for
sphere, (c) 4.8 N for cube, (d) 8.1 N for cuboid, and (e) 9.9 N for cylinder.
Interactive grasping provides (b) 13.0 N for sphere, (c) 9.0 N (108% increase)
for cube, (d) 13.1 N (61.7% increase) for cuboid, and (e) 15.8 N (59.6% increase)
for cylinder.

Four objects with standard geometry shapes, namely sphere,
cube, cuboid, and cylinder, were used to validate our hypothesis.
Gripper was actuated in current-based operation control mode,
which means the actuator’s torque was constant during the
experiment. The results of the comparison between conventional
grasping and interactive grasping are shown in Fig. 9(b)&(e).

V. DISCUSSION

A. Sensor Calibration for the Proposed Soft Tactile Finger

The histogram and scatter plots of the calibration data are
shown in Fig. 6. From the histogram, we could have an overall
look at the dataset, including the ranges and distributions of
the calibration data. From the scatter plots, we can see a strong
positive linear correlation between feed amount (mindex) and
normal force (Fx), though it is also influenced by the location of
the contact point (pindex). The sign of torque (Tz) is decided by

whether the contact point is located at the left or right part of the
finger. Light intensities (a1, a2, a3, a4, a5)have strong nonlinear
relations with Force and Torque. In Fig. 6, we just plot two of
them (a1, a2) as examples due to the space limitation.

Given that the OnRobot Force/Torque sensor has a rough
resolution (0.2 N for force and 0.001Nm for torque) [29], our op-
toelectronically innervated tactile finger has shown a satisfactory
performance on the force and torque predictions with the best
model’s RMSE less than 0.2 N and 0.0025Nm, respectively. For
the force prediction, the decision tree model performs best on the
baseline, while the cross-validation result shows it is over-fitted.
SVM achieves the best performance on the test dataset and is
chosen to predict forces in the real grasp experiment. For the
torque prediction, the decision tree model also performs best
on the baseline but suffers from over-fitting. SVM performs
surprisingly bad. Overall the random forest model performs best
and is chosen to predict torque in the real grasp experiment.

We treat the contact position as a regression problem despite
that the data we collected is discrete. The results in Table II
shows our model can generalize on unknown areas. The results
of real-time prediction shown in Table I also proved it. When
predicting the vertical contact position, we push the soft finger
with a constant normal force and get similar horizontal direction
performance. It may be used in slippery detection when a gripper
grasp using a constant force.

In the real-time prediction experiment, force, torque, and
contact prediction are predicted simultaneously. Fig. 8 shows
that the prediction has a low delay and closely follows ground
truth. However, the hysteresis effect is observed when predicting
force, probably due to the soft silicone gel’s low rebound speed.

Fig. 7 demonstrates the relationship between the number of
optic fibers and prediction performance. Generally speaking,
the prediction performs worse as the number of optic fibers
reduces. In the future, we may further lower the prediction error
by increasing the number of optic fibers.

B. Towards Rigid-Soft Interactive Grasping

Generally speaking, the results shown in Fig. 9(b) indicate
a considerable improvement in robustness of grasping using
the proposed interactive policy versus conventional open-loop
policy, except for the sphere. The reason is that circular config-
uration is already the most feasible configuration for the sphere.
As a result, our interactive policy will not make any difference
in grasping robustness.

However, for cuboid or cylinder, a parallel configuration is
preferred. Although the circular configuration could also pick
up some light objects, the actual contacting area is very limited
since two of the three fingers contact the object with a line. Such
grasping is not robust, especially when the object is heavy or
some disturbance occurs. The results in Fig. 9(c)&(d) show the
resistance force is increased by about 60% (from 8.1 N to 13.1 N
for cuboid and from 9.9 N to 15.8 N for a cylinder.

The lateral configuration is most feasible for cubic objects
since the object is too small to use three fingers. Gripper with
two parallel fingers is enough for grasping, and the left one could
be used for in-hand manipulation such as pivoting. However, this
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will involve the force distribution of multi-finger gripper, which
is not the letter’s scope. In this letter, we focus on single finger
optimization and, therefore, improve the final grasp. As a result,
the grasping performance is increased by 108% (from 4.8 N to
9.0 N).

In summary, our gripper performs configuration transition be-
tween circular configuration, lateral configuration, and parallel
configuration according to the target objects’ shapes. More than
that, our gripper could adapt any irregular objects based on the
finger deformation.

VI. CONCLUSION

In conclusion, this letter presents a novel optoelectronic inner-
vated gripper capable of sensing its soft fingers’ deformations,
which are further interpreted to infer the force and torque infor-
mation of each finger using machine learning methods. Also, we
propose a grasp optimization policy based on real-time force and
torque estimation, closing the loop of grasping control. During
the optimization progress, the configuration of the gripper’s base
is adjusted online. As a result, we could achieve better and more
robust grasps that could resist interference.

This work is a preliminary exploration of an online grasp
optimization based on the soft fingers’ real-time sensor data.
In the future, we would like to investigate further our soft
finger sensor’s design for better performance, a more in-depth
discussion of the optimization progress, and further exploration
of multi-sensory information system [30], [31].
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