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A Reconfigurable Design for Omni-Adaptive
Grasp Learning

Fang Wan ', Haokun Wang

Abstract—The engineering design of robotic grippers presents
an ample design space for optimization towards robust grasping.
In this letter, we investigate how learning method can be used to
support the design reconfiguration of robotic grippers for grasping
using a novel soft structure with omni-directional adaptation. We
propose a gripper system that is reconfigurable in terms of the
number and arrangement of the proposed finger, which generates a
large number of possible design configurations. Such design recon-
figurations with omni-adaptive fingers enables us to systematically
investigate the optimal arrangement of the fingers towards robust
grasping. Furthermore, we adopt a learning-based method as the
baseline to benchmark the effectiveness of each design configura-
tion. As a result, we found that the 3-finger radial configuration is
suitable for space-saving and cost-effectiveness, achieving an aver-
age 96 % grasp success rate on seen and novel objects selected from
the YCB dataset. The 4-finger radial arrangement can be applied
to cases that require a higher payload with even distribution. We
achieved dimension reduction using the radial gripper design with
the removal of z-axis rotation during grasping. We also reported
the different outcomes with or without friction enhancement of the
soft finger network.

Index Terms—Deep learning in grasping and manipulation,
mechanism design, soft robot materials and design.

I. INTRODUCTION

HE reconfigurable design adopts the concept of modularity

during the engineering integration of various functional
components based on its operating environment [ 1], [2]. Robotic
gripper, or the end-effector in general, provides the critical inter-
action between the robot system and target object in a particular
operating environment. With human hands as the iconic inspi-
ration for engineering design, most industrial grippers adopt a
different strategy of under-actuation for cost-effectiveness [3].
On the other hand, industrial grippers are usually designed with
fewer actuators than that of the fingers to achieve a suitable
or maximum adaptation for different objects during grasping.
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While a human hand has typically five fingers with 4 degree-
of-freedoms (DoFs) on each finger except that the thumb has 5
DoFs [4], a fundamental research question arises as to how many
fingers shall be integrated to achieve maximum adaptation for
robust grasping.

Object-centric generalization provides a powerful represen-
tation of the grasp learning task. Multi-finger robotics for object
manipulation has been a challenging issue due to the exponential
increase in dimensions in related kinematics and dynamics [5].
Recent progress shows a growing trend in adopting learning-
based methods to solve this problem [6], [7]. Existing integration
of robotic grippers usually adopts several fingers with different
arrangements [3], ranging from 2-finger arrangement for min-
imum points of contact, 3-finger for added robustness, to 4/5-
finger for human-like dexterity or load distribution. However,
it remains an open question on the optimal number of fingers
and their arrangements for an enhanced and robust grasping
performance.

Robotlearning is at the intersection between machine learning
and advanced robotics, which benefits from recent development
in data, computing, and algorithms [8]. The adoption of a
learning-based method alleviates the modeling details of the
interacting dynamics while extrapolating from feature-rich data
analytics for statistically oriented learning algorithms [9]. It has
been recognized that the adoption of soft and compliant grippers
provides an implicit representation of the object variation in
object-centric grasp generalization of manipulation skills and
task models [10]. A direct benefit is a systematic reduction in
the dimension of the manipulation problem during learning and
execution [11].

A. Related Work

Robotic fingers are generally inspired by animal fingers,
especially those from the human, where delicate motor functions
are supported by a comprehensive musculoskeletal system for
dexterous manipulation [12]. While some research aims at an
engineering replica of the human hand using robotics [13], [14],
most industrial grippers are designed with a different strategy
using just a few actuators and fingers due to cost-effectiveness,
efficiency, and robustness in operation [15]. With the growing
adoption of robotics in home automation, healthcare, logistics,
etc., a growing need emerges for the robots to manipulate objects
of amuch larger variety than those commonly found at particular
fixed work cells with only a handful of object variations [16].
The need for robotic fingers with adaptive features becomes an
original request in emerging research and applications [17].
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With the bio-inspiration from humans, a 5-finger arrangement
of the robotic fingers becomes a natural design choice. While it
remains a research challenge to fully understand the biological
reasons for five fingers per hand in most animals [18], some
hints can be drawn from the constraint theory for object grasp-
ing [5]. Parallel 2-finger gripper is the most common design
that requires only one actuator to derive two fingers, usually
arranged in parallel, for a minimum set of constraints for object
grasping. Although, in theory, a third constraint is needed for
a stable grasping, 2-finger grippers achieve stability through
the frictional forces caused by the reaction force normal to the
surface of object interaction [19]. More fingers can be added to
the gripper to enhance the robustness of grasping by introducing
more constraints [20]. However, it remains a design superiority
to utilize fewer actuators and fingers to achieve equivalent levels
of dexterity, adaptation, and robustness when interacting with
the physical environment.

Soft robots further reinforce the concept of under-actuation
in gripper design for enhanced adaptation. The nonlinear char-
acteristics of the soft material under fluid or other forms of
actuation produce a structural deformation across the whole
body of the robot [21], resulting in an unlimited number of
DoFs for the benefit of adaptive motion [22]. The adoption of
the learning-based method becomes a reasonable choice to deal
with the adaptive grasping problem with implicit modeling of
the motor functions and object variations [23]. However, there
remains a research gap on the topological design optimization
of the finger arrangement for robust grasping [24], where the
learning-based method may benefit from a systematic reduction
of dimension in the hierarchical robot control.

B. Proposed Method and Contributions

In this paper, we investigate the design optimization prob-
lem of finger arrangements in robotic grippers for enhanced
grasping adaptation of daily-life objects using learning-based
methods. A novel soft finger network with omni-directional,
passive adaptation is adopted for the gripper design following
a structural arrangement of the fingers for explorative experi-
ments. By using a benchmark framework of DeepClaw for object
manipulation, we collected 1000 blind grasps of YCB objects
for training and evaluated 500 model-predicted grasps with
different arrangements of the fingers. We found the statistical
evidence that suggests a 3-finger and 4-finger radial arrangement
of the soft finger networks achieve a grasp success rate of 96%
without the use of the rotational angle of the gripper, thus
further reduced the control dimension without compromising
grasp robustness. The contributions of this paper are listed as the
following.

e The adoption of an omni-directional soft finger network
with a friction enhanced layer for optimized grasping,
where a reconfigurable gripper design is proposed for ex-
plorative study.

* A systematic experimentation of the finger arrangement for
robust grasping, supporting the superiority of the radial 3-
finger and 4-finger arrangements with 96% grasp success
rate.
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A dataset of blind grasping with various finger arrangement
for reconfigurable gripper design, where a learning-based
grasp planner is trained without the need for object-centric
rotation during execution.

The rest of this paper is organized as follows. Section II
introduces the omni-adaptive finger network and the reconfig-
urable design of the gripper for finger arrangement research.
Section III explains the experimentation setup, procedure, and
results, where a dataset is collected for training a learning
model for universal grasping with different finger arrangements.
Section IV discusses the results and summarizes the findings
of this paper. Final remarks are included in Section V, which
conclude this paper.

II. RECONFIGURABLE DESIGN FOR OMNI-ADAPTIVE
GRASPING

A. Review of Finger Configurations in Gripper Design

We conducted a non-exhaustive survey of the standard multi-
fingered grippers used in academic research and industrial
applications, with results summarized in Table I. Unlike the
Shadow hand that aims at replicating the motor functions of
the human hand, most industrial grippers adopt either a radial
configuration with all fingers facing the palm center or a parallel
configuration with all fingers facing parallel to each other. The
average numbers of fingers and actuators are either two or three.
Some more advanced grippers with enhanced dexterity adopt
four actuators or more.

In general, one can observe a monotone increasing correlation
between numbers of fingers and actuators against the price of
the overall gripper. Under-actuation becomes an optimal design
choice that overcomes the need for dexterity and reduces cost,
where machine intelligence is introduced to achieve multi-modal
operation in different operating conditions using fewer actuators
than fingers. For example, the Robotiq’s adaptive 3-finger and
2-finger grippers are classic examples of under-actuated grip-
pers, where a preloaded spring is added to a five-bar mechanism
to achieve transition between parallel mode and encompassing
mode. A similar mechanism is also adopted by the DH-robot’s
grippers to achieve the same goal. The ReFlex gripper with three
fingers from RightHand Inc. adopts four motors to drive the
fingers, with three actuators driving fingers and one actuator for
reconfiguration.

Except for the under-actuation in mechanical robotic grippers,
reconfigurable gripper design is also applicable to soft robotic
grippers, such as those by the Soft Robotics Inc., where pneu-
matic driven fingers with patterned chambers of the cavity are
arranged on the palm basis as a flexible gripper design. Due to
the flexibility, light-weight, and low-cost of the silicone fingers,
these pneumatic soft grippers are convenient for reconfiguration.
The inflated soft fingers provide an infinite number of DoFs for
under-actuated adaptation.

To sum up, the actuators and finger design are the two dom-
inant factors in the gripper design. One should focus on the
engineering specifications of the actuators and fingers when
designing the gripper, which determines the gripper flexibility
and function.
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TABLE I
A NON-EXHAUSTIVE REVIEW OF THE DESIGN FEATURES IN ROBOTIC GRIPPERS
Number of | Number of Finger Finger Fnger
‘Company Grippers Series e
w 3;::::: 3 f:;::i::) Rotation Parallel Yes
Robot
motors
Gripper
Robotiq J
M EESS md2E 2 Imotors | Rotation Paralle Yes
140 Grippers
Fixed, Parallel
Soft Robotics ? "'G':g'm *| 2 ormore I::::':: ::::::.. | = Yes
2
ReHex 4(3xfingers,
RightHand TakkTile 3 1xpreshape) | Rotation Parallel Yes
motors
2-Finger
Adaptive 2 1 motor Rotation Parallel Yes
Gripper
Dh-robotics
3-Finger 4(3xfingers,
Adaptive 3 1%preshape) | Rotation Radial Yes
Gripper motors
X RG2 Gripper 2 1 motor Parallel Paralled No
OnRobot
éj l:;:f”:-rr 2 1 motor Parallel Parallel No
-
EPG 2 1 motor Parallel Paralled No
1 puneumatic . .
SCHUNK ! MPZ 3 (et Parallel Radial No
2k Pzv 4 ! poeumatic | po el Radial No
power source
S

B. Ommni-Directional Structural Adaptation

The robotic grippers involve a large design space for engi-
neering optimization, making it challenging to cross-compare
even there are many commercial grippers on the market. In this
paper, we propose to use a novel soft finger design shown in
Fig. 1 with layered structure for omni-directional adaptation
during physical interaction, which is cheap in cost, simple in
design, safe during collision, flexible for integration, and scal-
able towards application. We designed a reconfigurable gripper
structure where different number of these soft fingers can be
easily rearranged in various configurations to explore the design
space of finger arrangement in robotic grippers.

The proposed soft finger achieves omni-directional adaptation
through a layered network structure with a converging form
from the base towards the tip. Such asymmetric form enables
a relatively large stiffness in the longitudinal direction, while
the layer network structure enables a relatively low stiffness in
the radial direction. On the other hand, one can easily modify the
design by using different cross-sectional geometry from triangle

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 3, JULY 2020

(a) Features of omni-adaptive fingers

[

Mold
by LEGO

Fig. 1. The omni-directional adaptive design of the a soft finger network
capable of passive adaptation in geometry during physical interaction in (a)
and the finger surface design with a silicone rubber molded on the surface of
grasping in (b), where a simple mold is fabricated using Lego.

to square, pentagon, hexagon, or even circular shape or any other
geometry that suits the scenario. As a result, the differential
stiffness design of the finger structure with the variable design
of the cross-sectional geometry enables the soft finger to have
omni-directional adaptation during physical interaction. Further
analysis of the finger is beyond the scope of this paper, which
will be addressed in another one.

C. Design Reconfiguration for Robotic Grippers

From the review, several design parameters can be summa-
rized which contribute to the domain of design for robotic grip-
pers, including the number of fingers /V, the number of actuators
A, and the geometric constraints of the finger arrangement C' in
radial, parallel, or others. Let GG be the design system, a set of
parameters specifying all options for configurations. An element
g € G is defined as a configuration design. We give the function
of g as

g=f(N,A,C) (1)

Since the omni-adaptive finger is passively deformed, only
one air source is required to actuate the pneumatic cylinder under
each finger base to control the opening and close of the gripper.
Therefore, N = A in our design.

g=[(N,C) (2)
So,

G = f(N1,Ch), f(N2,Cy), f(N3, Cs), . .. 3)
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Parallel
3-finger

Parallel
4-finger

Circular
4-finger

Circular
3-finger

Fig.2. Design reconfiguration of the gripper modules in radial or parallel with
three or four of the omni-adaptive finger networks. All gripper configurations
are actuated by one pneumatic input during operation.

As shown in Table I, both parallel and radial arrangements of
the fingers are commonly adopted in commercial gripper design.
The parallel arrangement is generally easier in fabrication and
assembly with the possibility of mounting many fingers opposite
to each other in parallel arrangement, which is usually capable of
picking up long size objects. The radial arrangement provides
an even enclosure of the object from the radial directions for
geometrical adaptation, but the number of fingers may be limited
by the size of the gripper. As a result, we define g to have
five types of configurations, including 2-finger gripper, radial
3-finger (R3), parallel 3-finger (P3), radial 4-finger (R4), and
parallel 4-finger (P4). In this paper, we focus our discussion
on 3-finger and 4-finger grippers, which are less discussed in
literature. The Fig. 2 shows the four types of reconfigurable
grippers.

Each finger module is composed of an omni-adaptive finger,
an air cylinder (SMC C8510-25,0.7 MPa), and a mounting
structure. Finger modules can be quickly reconfigured on the
parallel palm or radial palm. Different combinations of palm
and fingers result in the different gripper configurations, which
changes the gripper features. Through the tracheal connection,
the gripper can be controlled by the solenoid valve. The whole
gripper system is compact and convenient for installation on the
robot arm.

III. EXPERIMENT RESULTS

The experiments are designed using robot learning methods to
evaluate (1) the adaptability of the soft grippers; (2) the capabil-
ity of the omni-adaptive soft gripper in reducing the dimensions
of the grasp planning problem; (3) the grasp performance of
different configurations of soft gripper.

A. DeepClaw for Grasp Benchmarking

All the experiments ran on a desktop running Ubuntu 16.04
with four 2.5Ghz Intel Core i5 7300HQ and an NVIDIA 1050Ti.
Physical grasping tests were run on DeepClaw benchmark sys-
tem [25]. The robot is a 6 DoFs UR10e robot with the designed
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Fig.3. (a) DeepClaw as an experiment setup for grasp benchmark. The system
consists of a UR10e robot, a Realsense 435 depth camera, a designed soft gripper
and a bin containing grasp objects. (b) The architecture of DeepClaw. (c) The
collection process of training data.

soft gripper mounted on the tool flange, as shown in Fig. 3(a).
The robot was mounted on a table, and a Realsense 435 depth
sensor was mounted about 1 meter above the table, providing
1280 x 720 resolution color and depth images. A rectangle bin
containing objects was placed underneath the depth sensor. The
actual workspace is 40 cm x 50 cm. The robot and the depth
sensor were calibrated to obtain the hand-eye matrix H. The
software and hardware architecture of DeepClaw is shown in
Fig. 3(b). The software contains driver modules for cameras and
robot arms, subtask pipeline [26], and data monitor for recording
experiment data. A subtask pipeline consists of functionalities to
locate and grasp the objects. In this work, we use an end-to-end
learning method to detect objects and plan grasps.

Soft grippers are well known to have excellent adaptabil-
ity [27], [28] and are able to grasp a variety of objects while
keeping perpendicular to the tabletop in applications [29]. Our
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hypothesis is that the grasp planning problem with our designed
soft gripper can be simplified to predict the best grasp pose
(u,v,0) where 0 is the yaw angle of the soft gripper while the
gripper was kept perpendicular to the table. Due to the soft and
adaptive nature of the fingers, grasps would be most stable when
the object is fully embraced by the soft fingers as long as the
object does not collide with the palm of the soft gripper. Hence
the optimal grasp position in z-axis with reference to the sensor
is defined by the following strategy.

. Zbin — 5ha Hobj < Hfinger
Zobj + Hfinger - §h7 Hobj > Hfinger

where zp;,, is the depth of the bottom of the bin, z.; is the
depth at given (u,v) read from the depth sensor, and dh is a
tiny offset to avoid collision with the bin. With known intrinsic
parameters of the sensor and hand-eye transformation matrix,
the grasp position (u, v, z) was then transform to (z,y, z) with
reference to the robot arm for grasp execution.

“

B. Learning Grasp Planners

The grasp trials were divided into two phases. Phase one
collected 1000 grasp attempts using 3-finger radial soft gripper,
which were later used to train grasp planners using the con-
volutional neural network (CNN). Ten objects from the YCB
dataset were chosen with diverse sizes, geometries, and weights,
as shown in Fig. 3(a).

The collection process of training data is summarized in Fig.
3(c). For each grasp attempt, five YCB objects were placed in
the workspace, and the robot stood by at the home position.
The Realsense 435 took a color and a depth image that captures
both the objects and the soft gripper. Then the robot proceeded
to perform a blind grasp with random v, v, and 6 € [~F, 7).
Then the robot raised the object and transported it to the home
position where the Realsense 435 took another color image and
decided whether the grasp succeed or fail. A grasp was labeled
as a success if it was able to lift and transport a desired object
to the home position. The object was placed back into the bin,
and the robot returned to the home position before a new grasp
attempt started. Each entry of the training dataset contains a
color image, and a grasp pose (u, v, 6), and a label indicating
successful or failed grasps. There were 270 successful grasps
among the 1000 attempts.

In order to evaluate the capability of the omni-adaptive soft
gripper in reducing the dimensions of the grasp planning prob-
lem, we trained and compared two CNN-based grasp planners on
the training dataset with or without rotation angle information.
We built a fully convolutional neural network (FCN) adapted
from AlexNet [30], as illustrated in Fig. 4. During training time,
the network takes as input a cropped color image centered at the
grasp position (u,v) such that the grasp position information
is embedded in the image itself. The cropped patch size is
250 x 250, which covers the soft fingertips on the image and
is resized to 227 x 227 before fed to the AlexNet convolutional
layers. The network predicts the successful grasp probabilities
independently for n rotation angles where n is set to 1 or 9 in
this work to test the capability of the omni-adaptive soft gripper

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 3, JULY 2020

l - Angle 1
Pretrained five cové conv? conv 8
convolutional layers > 6x6 = 1x1 % 1x1
from AlexNet 4096 1024 2n
Angle n
Fig. 4. The architecture of the grasp planner network adapted from AlexNet

by converting the last three fully connected layers to 1 x 1 convolutional layers.
The last layer output n binary classifications.

TABLE II
GRASPING TEST EXPERIMENTS DESIGNED TO EVALUATE FOUR DIFFERENT
FINGER CONFIGURATIONS

No. | With or w/o rotation | Finger configuration
1 with R3: 3-finger radial
2 without R3: 3-finger radial
3 without P3: 3-finger parallel
4 without R4: 4-finger radial
5 without P4: 4-finger parallel

in reducing the dimensions of the grasp planning problem. In
the case of n equals 1, the network predicts a single successful
grasp probability for position (u,v) regardless of the rotation
angle of the soft gripper. In the case of n equals to 9, the network
predicts a 9-dimensional probability vector where each element
represents the success probability of grasping position (u, v) at
—80°, —60°, .. .,60°, 80°.

The first five convolutional layers were initiated and fixed with
weights pre-trained on ImageNet, and the last three layers were
initialized with a truncated normal distribution. The loss function
of the network is defined similarly to that in [31] such that only
the loss corresponding to the grasp angle is backpropagated. We
used Tensorflow with a batch size of 128. The training accuracy
converged to 1 quickly within 80 training steps when n equals
to 1 and 50 training steps for n equals to 9. In the rest of this
work, we shall call the trained network with n equals 1 and 9
grasp-planner-1 and grasp-planner-9, respectively.

C. Evaluating Design Reconfiguration

Phase two of the grasp trials was to evaluate the perfor-
mance of the learned grasp-planner-1 and grasp-planner-9 on
five known and five novel objects using different soft gripper
configurations as detailed in Table II. The collection process is
similar to that in Fig. 3(c) except the random u, v, and 6 are
replaced by values predicted by the learned grasp planners. We
performed five sets of grasp trials, and each set consists of 100
trials (ten per object). Since our planners are fully convolutional
neural networks, we can feed a color image of any size to the

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 31,2023 at 03:53:45 UTC from IEEE Xplore. Restrictions apply.



WAN et al.: RECONFIGURABLE DESIGN FOR OMNI-ADAPTIVE GRASP LEARNING

Fig. 5. The probability maps of successful grasps predicted by (a) grasp-
planner-9 where the length and orientation of long axis of the oval represent the
highest success probability and its corresponding grasp angle at the center of
the oval; (b) grasp-planner-1.

network and obtain a relatively dense probability map at a single
prediction. The computation time for a single prediction was
about 90 ms for both planners.

For each grasp attempt, one object was placed in the bin, and
we fed the color image of the whole bin to the grasp planners
and obtained the probability map of successful grasps. Then the
grasp with the highest success probability was executed. Then
the object was randomly placed back into the bin for the next
grasp trial. The resolution of the map is determined by the size
of the input image and the strides used in the network. With our
architecture, the map gives a prediction every 32 pixels. When
executing grasps predicted by grasp-planner-1, we fixed the
orientation of the soft gripper. Since the objects were randomly
placed in the bin, these grasps can be regarded as arandom grasp
in terms of 6.

D. Results

Fig. 5 shows examples of probability maps predicted by grasp-
planner-9 and grasp-planner-1. We found that both planners have
successfully learned to detect the location of the objects from
the background as they predicted high probabilities around the
objects and low probabilities at empty areas. Besides, the two
maps produced quite similar probability distributions, which led
us to the hypothesis that with the exceptional adaptability of the
soft fingers, it might be possible to achieve a high success grasp
rate even without predicting the grasp angles.

Fig. 6 shows the deformation of the soft fingers of the 3-finger
radial gripper when grasping the Pringles can. All three fingers
were able to adapt to the shape of can in different ways and form
a firm grasp.

The grasp evaluation results are shown in Fig. 7. The 3-finger
radial soft gripper achieved comparable performance with grasp-
planner-9 and grasp-planner-1 and was able to grasp all seen ob-
jects at 100% success rate. Even for unseen objects, the 3-finger
radial configuration achieved an average 94% and 92% success
rate with grasp-planner-9 and grasp-planner-1, respectively.

Both 3-finger and 4-finger radial configurations achieved an
average 96% success rate over the ten testing objects with grasp-
planner-1. 4-finger radial configuration outperformed 3-finger
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Fig. 6. (a) The deformation of the soft fingers when grasping the Pringles can,
the green oval is the optimal grasp prediction; (b) two fingers side and (c) one
finger side.

—o— R3 (with rotation) R3 (without rotation)
~—a— P3 (without rotation) ~..-a.. R4 (without rotation)

— % P4 (without rotation)

(a) 1 ‘,.;_;-._..._._._.—..._:..:.._ - —
09 =
0.8
0.7
0.6
05
0.4
03
0.2
BASEBALL CLAMP  PRINGLESCAN TOY-DRILL SPONGE
(b) -
0.9
0.8
0.7
0.6
05
0.4
03
0.2
PLASTIC TOMATO MUG SPATULA CLEANSER
APPLE CAN BOTTLE
Fig. 7. Grasp success rates of (a) 5 seen objects and (b) 5 novel objects using

four different finger configurations

configuration when grasping the spatula but under-performed
when grasping the cleanser bottle.

IV. DISCUSSION
A. Optimized Finger Configuration for Adaptive Grippers

Our experiment results generally support an optimized gripper
design with three or four fingers arranged in a radial config-
uration for robust grasping outcomes using the proposed soft
finger networks. Considering the engineering trade-offs, we rec-
ommend the 3-finger radial arrangement for cost-effectiveness
and space-saving with maximum usage scenarios. On the other
hand, we recommend the 4-finger radial arrangement for en-
hanced robustness with higher and even payload distribution
with redundant form closure for forceful grasping. Although
the results presented in this paper are biased towards to soft
finger network used in this paper, the qualitative outcome is
generally applicable to grippers of other material properties.
While 2-finger arrangement is typical among gripper of rigid
design, we recommend grippers with soft fingers to follow
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Fig. 8. Grasp success rates of 5 seen objects and 5 novel objects using R3
finger configuration with (yellow) and without (purple) silicone skin covering
the soft fingers.

our design recommendation of finger arrangement for a robust
grasping outcome.

It should be noted that the fingers presented in this paper
adopts an angled output when closing the fingers, which nat-
urally pushes the target object away towards the desktop or
sideways, resulting in reduced stability in grasping outcomes.
Such angled grasping is also avoided by most industrial grippers
except for the one developed by the Soft Robotics, Inc. due to its
unique form closure during grasping. We expect the results to
be further improved if we change the angled grasping to parallel
grasping by changing the mechanism between the fingers and
the actuators.

The results shown in Fig. 7 also suggest that for grasp success
rate does not change very much among the finger arrangements
experimented in this paper. One exception is with the parallel
3-finger arrangement, which performs poorly for both known
and new objects. By analyzing the failed grasps, it becomes
evident that the encompassing grasping is not suitable for the soft
finger network used in this paper. The side with two fingers has
a gap of 1 finger width, which is not suitable to pick up objects
of relatively small size. This explains the result in Fig. 7(b) in
the solid grey line, which is even worse when the z-axis rotation
is removed. Please note that for rigid grippers, such a 3-finger
configuration with encompassing closure is an advantageous
arrangement, i.e., Robotiq’s adaptive 3-finger gripper. This is
similar in the parallel 4-finger arrangement. Note that in this
case, the grasp success rate for known objects are still very high,
and for the five new objects, the grasp success rate achieved
100% for four objects except spatula, which is of an irregular
geometry and slim shape.

B. Dimensional Reduction for Grasp Learning

As shown in Fig. 7, our results indicated the potentials of re-
moving the z-axis rotation for general-purpose object grasping.
For the five known objects, the trained planner without rotation
achieved 100% grasp success for seen objects. For the five novel
objects, the trained planner still achieved a 100% grasp success
rate for simple objects, including plastic apple, tomato can, mug,
and cleanser bottle, but dropped slightly for the spatula. One
should notice that the spatula is of a somewhat irregular shape
and is also considered challenging to pick up in general.
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This potentially simplifies the grasp planning problem to a
simple localization problem. In scenarios where grasp items
are separated from each other, we could locate the object using
computer vision or deep learning methods and perform the grasp
at the centroid without the need to collect grasp training data.

C. Friction Enhanced Finger Design for Robust Grasping

The silicone skin covering the soft fingers enhanced the
frictions between the fingers and objects greatly. To test its
effect, we also performed a set of 100 grasp trials (10 per object)
similar to grasping test No.2 in Table II except the silicone skin
was removed from the fingers. As shown in Fig, the average
success rates of ten objects dropped considerably from 96%
to 34%. Among the ten objects, the success rates of sponge
and tomato can remain relatively high at 90%, and the success
rates of Pringles can, mug and spatula dropped to zero. Further
investigation of the design of silicone skin will be explored in
our future work.

D. Learning From Failures for Effective Model Training

Besides the training dataset described in Section III-B, we
also tried to place all the ten training objects in the bin and
collected 2000 bind grasp attempts, whose success rate was
41.4%. However, the learned grasp planners failed to learn
the position information of the objects and give meaningful
predictions. To investigate the possible reasons, we purposely
selected 250 successful grasps, and 750 failed grasps from 2000
grasp to train the network. The learned grasp planner was very
aggressive and tended to give high probabilities even at empty
spaces. The learned lesson is that we have to leave enough space
between objects in order to learn from failures.

V. CONCLUSION

In this paper, we explored the reconfigurable design for finger
arrangement using a novel soft finger with omni-directional
adaptation. We adopted the robot learning method to experiment
with different arrangement of the fingers for design guidelines
of a robust robotic gripper. In particular, our result shows that
the 3-finger radial configuration is suitable for space-saving and
cost-effectiveness, whereas the 4-finger radial arrangement can
be applied to cases that require a higher payload with even
distribution. We also achieved dimension reduction using the
proposed gripper design with the removal of z-axis rotation
during grasping. We also reported the different outcomes with
or without friction enhancement of the soft finger network.
Although our proposed gripper achieved a high success rate even
during the blind grasping stage, we found that it is necessary
to intentionally include enough failed grasps during the data
collection stage to improve the trained model.

The limitation of this work is the focus of design parameters
on finger arrangement, FEM analysis of the soft finger, and
the limited experiment with the angled grasping, which will be
addressed in the future. Further testing is required to involve
more objects to verify the design guidelines with statistical
evidence.
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