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Point cloud data provides three-dimensional (3D) measurement of the geometric details

in the physical world, which relies heavily on the quality of the machine vision system.

In this paper, we explore the potentials of a 3D scanner of high quality (15 million points

per second), accuracy (up to 0.150 mm), and frame rate (up to 20 FPS) during static

and dynamic measurements of the robot flange for direct hand-eye calibration and

trajectory error tracking. With the availability of high-quality point cloud data, we can

exploit the standardized geometric features on the robot flange for 3D measurement,

which are directly accessible for hand-eye calibration problems. In the meanwhile, we

tested the proposed flange-based calibration methods in a dynamic setting to capture

point cloud data in a high frame rate. We found that our proposed method works robustly

even in dynamic environments, enabling a versatile hand-eye calibration during motion.

Furthermore, capturing high-quality point cloud data in real-time opens new doors for

the use of 3D scanners, capable of detecting sensitive anomalies of refined details even

in motion trajectories. Codes and sample data of this calibration method is provided at

Github (https://github.com/ancorasir/flange_handeye_calibration).

Keywords: 3D scanner, hand-eye calibration, robustness, flange-based calibration, photoneo

1. INTRODUCTION

Growing adoption of high-fidelity 3D scanners provides a versatile sensing solution for novel
robotic systems to perceive the unstructured, yet dynamic, physical environment with refined
details in geometry, color, texture, and insights (Weingarten et al., 2004; Qi et al., 2017; Wang et al.,
2019). There is an engineering trade-off during the design and development of 3D scanners in the
measurement area, accuracy, and frame rate (Sarbolandi et al., 2015). When interacting with the
robotic manipulators, it is generally accepted that the capability of sensing high-quality 3Dmotions
in real-time would contribute to the overall advancement of robotic research and applications
(Kagami et al., 2002; Kanade, 2012). However, it remains unclear about the potential impact due
to the limited research, which motivates this paper.

Machine vision contributes to the robot system by providing the geometry data of the physical
world as well as the robot itself. The hand-eye calibration is a geometric synchronization process
among the camera, robot, and environment in the spatial domain (Shah et al., 2012). Classical vision
system usually requires an external calibration object of high precision to be used as the geometric
baseline, which exhibits a standardized geometry feature for optical measurement and algorithmic
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processing (Tsai and Lenz, 1989; Kahn et al., 2014; Yang et al.,
2018). In general, it is an involved and expensive process which
requires the high-quality manufacturing of the calibration object,
the proper assembly of the robotic vision system for calibration
(Karabegovic et al., 2006), and advanced feature engineering
algorithm for calculating the calibration accuracy (Heikkila,
2000). Besides machine vision, there are also tactile-based sensing
solutions for object recognition (Chin et al., 2019; Yang et al.,
2020b).

With the growing maturity in 3D depth-sensing technologies
(Stoykova et al., 2007; Halmetschlager-Funek et al., 2019)
and the international standardization of the robot design and
manufacturing, it opens new doors through direct measurement
and sensing of the depth data. For example, as shown in Figure 1,
with the availability of high-quality 3D depth scanners (Zhang,
2018), one can potentially exploit the existing geometric features
on the robotic manipulator under internationally recognized
standardization, i.e., International Standard Organization (ISO)
9409-1:2004, for a direct measurement and calibration ISO
(2004). We are interested in exploiting such geometric features
using depth sensors through particular a dynamic measurement
of high resolution, accuracy, and frame rate, which is the focus of
this paper.

1.1. Related Work
Technical specifications, including resolution, accuracy, and
frame rate, contribute positively to the quality metrics of a

FIGURE 1 | The proposed flange-based hand-eye calibration method, including (A) the experiment setup of a minimum robot system the involves a UR5 e-series and

a Photoneo MotionCam-3D camera, both installed on a vibration isolation table; (B) the mechanical drawing of UR5 e-series robot flange that follows ISO

9409-1-50-4-M6; and (C) an illustration of the hand-eye calibration results using the proposed method with accuracy as high as the camera’s, probing the hardware

limit.

3D scanner. For example, line laser scanners is a commonly
adopted in engineering automation where a laser is modified
to project a line over the target object for high-resolution,
continuous measurement (Gestel et al., 2009). Such line laser
profilers are usually limited to conveying systems due to the
underlying profiling process in a line-by-line manner. Stereo
vision systems is another classical method that mimics the
triangulation principals of binocular vision (Aguilar et al., 1996).
It can easily cover a much wider area per frame rate but
usually limited in resolution and accuracy for objects with fewer
features. Time-of-flight (ToF) technology measures the traveling
time of light emitted by illumination to an object and back
to a detector (Kolb et al., 2010; Foix et al., 2011). Structured
light measures the deformation of certain patterns of particular
design over the target area (Salvi et al., 2010). While the ToF
cameras are usually developed for consumer usage, which can
produce point clouds in real-time frame rate with compromises
in accuracy and resolution, structured light cameras exhibit
the opposite characteristics for engineering automation. The
3D perception technologies have been widely applied to high-
accuracy reconstruction (Chen et al., 2019), defect and surface
inspection (Tang et al., 2019), and intelligent robot (Wan et al.,
2020; Yang et al., 2020a).

The standardization of robot interfaces at various levels is of
critical importance to the reusability and exchangeability of robot
systems, including mechanical, electrical, and communication.
Among the International Standard Organization’s catalog
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FIGURE 2 | Except from the ISO 9409-1: 2004 on the design standardization of robot flanges, including (A) the designation code format and recommended

dimensions, and (B) the detailed mechanical drawings and notations.

25.040.30 industrial robots and manipulators, the ISO 9404-1
specifies the design standardization of the mechanical interfaces
or the fixture design on the tool flange in particular. Figure 2 is
adapted from the latest version released in 2004, which specifies
the critical mechanical interfaces including the threaded holes
referencing circle diameter in d1, the flange’s outer circle diameter
in d2, the number of threaded holes N to be used for fixture, the
size of the threaded holes d4, etc.

1.2. Proposed Method and Original
Contributions
In this paper, we explore the potential use of a direct hand-
eye calibration method utilizing the depth-sensing data of the
robot flanges under ISO standardization. In particular, with the
advanced capability of the depth-camera available, we further
explored the potential use of our proposed method for hand-eye
calibrations in a dynamic setting during motion. Furthermore,
we found that the availability of such high-quality point cloud
data in high frame rate enables us to extend our proposedmethod

for a whole-body calibration tacking for the robot system. The
following summarizes the original contributions of this paper:

• A novel hand-eye calibration method of high accuracy,
utilizing the existing, standardized design features on the robot
flange with reduced system error;

• A systematic exploration of a structured-light 3D scanner
of high resolution, accuracy, and frame rate for robotic
calibration and manipulation;

• A direct whole-body motion tracking and calibration
monitoring using direct depth sensing in a dynamic setting of
robotic manipulation;

• An exploratory investigation of the high-frame-rate data
redundancy problems in depth sensing, which was not
discussed in previous literature.

The rest of this paper is structured as follows. Section 2
formulates the hand-eye calibration problem with a direct 3D
measurement of the robot geometry, reviews the standardized
design features on the robot flange, and introduces the proposed
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calibration method. This section also introduces the technical
features of the high-quality 3D scanner to be used in this paper.
Section 3 presents the experiment results using flange-based
calibration method in the common static setting, as well as the
challenging dynamic setting. We also explored the potential use
of 3D point cloud measurement for trajectory tracking and error
detection. Section 4 presents the discussions of the proposed
method and the research potentials of such high-quality 3D
scanner. Section 5 concludes this paper.

2. METHODS

2.1. Problem Formulation
The hand-eye calibration problem involves the kinematic
synchronization of the spatial transformation among four
coordinate systems, including the robot flange

{

Flan
}

,
manipulator base {Base}, camera sensor {Cam}, and calibration
marker

{

Mark
}

. In the example of an Eye-on-Base configuration,
which is also called Eye-to-Hand configuration, a camera is
installed on a structure where the relative positioning to the
manipulator base is a fixed matrix Cam

Base Ĥ. The calibration marker
is usually fixed on the wrist joint near the robot flange, denoted as
Mark
Flan

Ĥ. As a result, we can express the coordinate transformation
of the Eye-on-Base configuration using Equation (1).

Base
FlanH · FlanMarkĤ = Base

CamĤ · CamMarkH (1)

A common method to solve Equation (1) is by using iterative
methods to solve a general equation of AX = YB, where
A = Base

Flan
H is a known matrix depending on the robot system’s

hardware specification. B = Cam
Mark

H is a calculated matrix based
on the camera’s optical measurement of the object in forms of a
2D image or 3D point cloud, X = Flan

Mark
Ĥ and Y = Base

CamĤ are two
unknown matrix to be solved.

Literature and engineering practices have suggested many
different marker designs for calibration. As one might notice,
solving Equation (1) is not an easy task due to the involvement
of the

{

Mark
}

frame on the calibration object. Common designs
of the markers for 3D camera take the shape of a sphere with
certain texture specific to the technology of the vision system. The
problem to be solved in this paper is to find a robust hand-eye
calibration method without using any external marker.

2.2. Flange-Based Hand-Eye Calibration
Most robot manipulators are built with excellent repeatability
through manufacturing and assembly but suffer from accuracy
due to the inverse kinematic computation involved during
control (Elatta et al., 2004). Other kinematic calibrations concern
the spatial synchronization between the tool and the flange, or
different robot systems in co-manipulation tasks (Wu et al.,
2016). The calibration process usually involves a specially
designed marker as the measurement baseline for accuracy.
The literature also suggested potential techniques for object-
less calibration, but most of them involve complex operations
in algorithmic level (Li et al., 2018), which introduces further
uncertainties in system errors.

In this paper, we propose a marker-less hand-eye calibration
method for high-fidelity 3D scanners by utilizing standardized
design features on the robot flange, namely flange-based hand-
eye calibration method. By letting the Tool Center Point (TCP)
of the tool flange be the marker point, we can obtain the
coordinates of the TCP positions with reference to the robot
base

{

Basepi | i = 1, 2, ..., n
}

by directly reading from the robot
controller and obtain the coordinates of the same TCP positions
with reference to the camera

{

Campi | i = 1, 2, ..., n
}

by finding
the center of the circle features of the tool flange from point
cloud data. The steps of identifying the TCP point by the camera
are as follows. Firstly, the tool flange plane is identified by plane
fitting using random sample consensus (RANSAC) after removal
the irrelevant part of the point cloud, as shown in Figure 9.
Then the outer circle of the tool flange is found using RANSAC
fitting with known radius and the TCP is the center of the circle.
According to Umeyama (1991), the least-squares estimation of
transformation between the robot base and the camera Base

CamĤ can
be reformulated as following

min
1

n

n
∑

i=1

∥

∥

Base
CamR · Campi +

Base
Camt −

Basepi
∥

∥ (2)

where Base
CamR and Base

Camt are the rotation and translation between
the robot base and the camera. Equation (2) has an analytical
optimal solution using Singular Value Decomposition (SVD)
method and aminimumof four non-coplanar points are required
for calculation. The readers are encouraged to refer to the Github
page for further implementation details.

2.3. 3D Camera With High Resolution,
Accuracy, Frame Rate
The successful implementation of the proposed method requires
technical specifications from the depth sensors to capture the
standardized design features on the robot flange. In this paper,
we experiment with a depth-sensor from Photoneo,MotionCam-
3D, to demonstrate the proposed method. As shown in the
data sheet produced in Figure 3, MotionCam-3D is capable
of producing high-quality point cloud data in a competitive
resolution, accuracy, and frame rate. The MotionCam-3D is a
structured light camera implemented by a custom CMOS image
sensor. Capturing high-density point cloud in near real-time
frame rate enables the camera to track movements as fast as 40
meters per second.

A practical problem with the MotionCam-3D is probably
saving the data. At the top fps of 20 in the highest resolution
of nearly 0.5 million points within 1,068 × 800 depth map, a
total of nearly 10 millions points need to be processed every
second, producing more than 400 MB per second data to be
saved on a hard disk. This could be a challenging task on the
computing hardware to process such amount of data in real-time,
which requires efficient algorithm design or matching hardware
to make use of the data. Such data redundancy is useful in
inspection,measurement, or detection tasks to identify anomalies
but unclear about its contribution to the improved manipulation
of robots, which is one of the research questions to be explored in
this paper.
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FIGURE 3 | The MotionCam-3D camera from Photoneo, including (a) the technical data sheet; and the captured point cloud of YCB objects (b) in high resolution

static scan with nearly 2 million points captured at up to 0.150mm accuracy under 3 FPS; and (c) in motion with nearly 0.5 million points captured at up to 0.500mm

accuracy at the maximum 20 FPS; (d) the captured point cloud of a steel ruler with thickness of 1mm.

3. EXPERIMENT RESULTS

3.1. Experiment Setup
The experiment is conducted using a minimum robot system
with a vision sensor. As shown in Figure 4, a UR5 e-series by
Universal Robot is fixed on one side of a vibration isolation
table, whereas an L-shape structured built with aluminum
truss modules are installed on the other side. The Photoneo
MotionCam-3D is fixed on top of the aluminum truss facing
downwards to the tabletop. Please note that no gripper was used
in the experiments in this paper.

Although the proposedmethod is implemented by referencing
to the robot flange, we are not bounded by such geometric
constraint thanks to the high-quality point cloud captured by
MotionCam-3D. We also demonstrate the extension of the
proposedmethod, which applies to the general geometric features
of the robot.

3.2. Flange-Based Calibration in Static and
Motion Modes
Flange-based calibration was first conducted using point clouds
captured in high-resolution, static mode. The robot moved in
a grid of 4 × 4 points within a 200 × 200mm2 area in the x-y
plane with a random vertical perturbation at around z = 220mm.
The robot stopped at each grid point while the scanner took a
picture and saved the point cloud. In total, 16 pairs of point
cloud and the corresponding robot pose were collected. After
obtaining the hand-eye matrix, the 6D calibration error matrix is
estimated by projecting the mesh model of the tool flange in the
camera coordinate with a particular robot pose for verification
and computing the registration matrix between the mesh model
and the captured point cloud using iterative closest point (ICP)
algorithm (Rusinkiewicz and Levoy, 2001). The results of the
calibration errors in static mode are reported in Table 1. The
translation errors are about 1 mm in all three axis. The rotation
errors can also lead to displacements when applying the hand

FIGURE 4 | Experiment setup using a minimum robot system, where the robot

flange is configured to move along four way points on the vertices of a cube.

eye matrix. For example, the 0.19 degree error in pitch can lead
to 1.66 mm displacement at 0.5 meter away from the camera
estimated by R × θ where R is the working distance from the
robot tool to the camera and θ is the rotation angle in radian.
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TABLE 1 | The collected error compensation values for the flange-based

hand-eye calibration methods in static and motion modes.

Mode Translation (mm) Rotation (degree)

x y z roll pitch yaw

Static 1.57 −1.07 −1.12 −0.06 −0.19 0.09

Motion 18.89 −44.90 6.22 −4.76 −1.61 2.38

We conducted another experiment by capturing the point
cloud of the robot flange at up to 20 frames per second (PFS).
In this experiment, the robot moves along a trajectory by passing
four vertices of a cubical space of 200 × 200 × 200mm3. The
motion is programmed through the teach pendant attached to
the robot controller using moveJ command. The results of the
calibration errors in motion mode are also reported in Table 1.
Note that due to the limited access to the timestamp data in
Photoneo software, the point clouds for motion mode are not
synchronized with the corresponding robot poses, which may
cause the exaggerated differences between the static and motion
modes in Table 1.

More importantly, the calibration errors can be compensated
to the hand-eye matrix by right multiplying the hand-eye matrix
computed from SVD method by the error matrix. After error
compensation for the experiment values collected in Table 1, we
were able to achieve a calibration accuracy as high as the camera’s
precision at 0.150mmwith respect to the verification point cloud.
The calibration process essentially works like an initial guess
followed by the ICP error adjustment.

3.3. Flange-Based Motion Tracking
In this section, we present an extension of the proposed
method for trajectory tracking by utilizing the high-frame-rate
motion scanning capability of the MotionCam-3D camera. After
calibration, we could perform a continuous detection of the robot
flange while the robot is in moving. We used the same four
way points as the previous experiment and tracked the TCP
trajectory on robot flange in 20 FPS. The results are plotted in
Figure 5, which includes the position data collected from the
robot controller in green dots against those detected by the 3D
scanner in red dots. The results in Figure 5 demonstrated the
versatility of the proposed method with the availability of quality
point cloud data collected in high frame rate.

Besides, we can also plot the history of the calibration errors
during motion tracking of the robot flange in Figure 6. There is
a small delay of about 140ms between the timestamp of the on-
board image capture and that of received by the computer, which
is synchronized later manually when plotting Figure 6. It seems
that, from the collected data, the translational components of the
calibration error can be greater than −10mm at some point in
Figure 6. However, the rotational components remain reasonably
small, which complies with general observations. This relatively
exaggerated calibration error could be caused by the imprecise
synchronization of timestamps between the point cloud collected
from the camera, and the robot poses read from the controller.

3.4. Tracking of the Calibration Error
A limitation of the proposed method is the geometric features
on the robot flange, which may be obscured by the end-
effector during normal operation of the robot system, causing
unnecessary troubles when using the proposed method. In this
section, we demonstrate an extension of the proposed method by
using other parts of the manipulator for trajectory tracking using
quality point cloud data collected in high frame rate.

Instead of using the robot flange, we could alternatively
use other parts of the robot for calibration measurement and
trajectory tracking. For example, we have shown in Figure 7

the history of calibration errors during motion tracking of the
first wrist link on the UR5 e-series. The CAD file of the link
could be acquired from Universal Robot website. Moreover, the
results in Figure 7 exhibit consistent behaviors as those reported
in Figure 6. Alternatively, one can choose any part of the robot to
perform the same calibration process, as long as the chosen part
is convenient to be captured by the camera during motion.

In cases where the CAD models are not directly available,
one can exploit the MotionCam-3D camera to reconstruct a
high-quality point cloud model of the target object for tracking.
Then, following the same method as above, one can further
extend the method using any other object for motion tracking,
which demonstrates the versatility of the proposed method. Our
current results suffer from the limited access to the timestamp
synchronization between the captured point clouds and the robot
poses, which could be the cause of the exaggerated calibration
errors in the translational component in Figure 7. An illustration
of the point cloud overlay is shown in Figure 8. It should be
noticed that the collected error compensation values inTable 1 in
static mode is much smaller than those collected inmotionmode.
Further understanding of MotionCam-3D’s working principals
may be necessary to evaluate the point cloud quality in motion, as
well as its usage for dynamic scenarios for robotic manipulation.

4. DISCUSSIONS

4.1. Point Cloud Quality in Static and
Motion Modes
The capability of capturing high-quality point clouds of the
target object in static and motion modes is an important feature
offered by the MotionCam-3D camera. Shown in Figure 9 is the
comparison of the captured point clouds about the robot flange in
static and motion modes. The static scan in Figure 9A produced
a point cloud with higher density in general and fewer noises on
the edges than the one scanned in motion shown in Figure 9B.
For hand-eye calibration problems where the accuracy of the
sensor is of greater importance, the static mode offers a refined
measurement of the geometric details that enables direct use
of 3D scanners for hand-eye calibration. However, in other
scenarios such as trajectory monitoring and error detection, the
point cloud of the robot flange generated from the motion mode
offers a reasonable measurement of dynamics with visible details.

In general, a growing versatility in robotic manipulation
research and applications are to be expected in the near future.
Besides high-quality point cloud in different modes, other
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FIGURE 5 | Trajectory tracking of the TCP center with moveJ. (A) In x-y plane (B) In x-z plane.

FIGURE 6 | Tracking calibration error using robot flange.

FIGURE 7 | Tracking calibration error using the first wrist link.

products such as the fourth edition of the Microsoft Kinect,
i.e., Azure Kinect, offers a much-improved depth-sensing within
a smaller form factor comparing to previous models with
the addition of far-field speech and sound capture, and edge
computing for AI.

4.2. Direct Hand-Eye Calibration in 3D
In the classical hand-eye calibration process, it is difficult to
quantify the calibration error accurately because the ground

true transformation is not known. Li et al. (2018) used the
calibration results using a chessboard pattern as the benchmark
to evaluate calibration methods without calibration object,
achieving an error about 2 mm. Wu et al. (2016) proposed
a simultaneous hand-eye calibration method using reflective
marker and the experiment with an NDI Polaris optical tracker
(RMS repeatability 0.1 mm) achieved translational errors of 2
mm and rotational errors of 0.5 degree. With the availability
of high-accuracy 3D scanners, our method without calibration
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FIGURE 8 | The point cloud overlay between those captured by the 3D scanner (yellow) and those generated from the CAD model (blue) of the wrist link 1 on a UR5

e-series, and note the mismatch of the point clouds on edge.

FIGURE 9 | Comparison of the captured point clouds about the robot flange in different motion modes. (A) Static scan. (B) Scanned in motion.

object achieves translational errors of 1 mm and rotational errors
of 0.1 degree with much less data and computation. Furthermore,
after error compensation, we are able to push the calibration
accuracy to reach the hardware limit at 0.15 mm, namely the
precision of the 3D scanner.

The standardization in the design and manufacturing of the
robot flanges, or other similar features, offers a convenient
and useful reference for hand-eye calibration. By using depth-
sensors of reasonably high-quality, we experimentally verified
a comparable calibration accuracy as high as the camera’s,
probing the hardware limit. The combination of robotic
manipulators with depth-sensors has been widely adopted
in fundamental research as well as applications such as
bin-picking in e-commerce fulfillment, machine tending for
intelligent manufacturing, palletizing and de-palletizing for
logistics, and healthcare industry for collaborative inspection
and measurement.

We conducted extensive experiments to verify the robustness
of the proposed method with a range of robotic manipulators,
including UR10 e-series, Franka Emika, UR5, and Aubo i5,
with other industrial-grade depth sensors such as Photoneo
Phoxi S model and M model, and consumer-grade ones
such as Microsoft Azure Kinect DK. Detailed results of
the experiments are reported on the Github page for the
readers’ interests.

4.3. Whole-Body Tracking of the
Calibration Error
The high-frame-rate 3D measurement offered by the
MotionCam-3D camera enables us to further experiment
with our proposed method beyond the design constraint
in the robot flange. As shown in the experiment results in
Figure 7 of tracking the calibration error using the CAD
model of the wrist link against the measured point cloud,
one can quickly reproduce the method to any visible part
of any robotic manipulator with ease. Even for the case
where the manipulator or target object’s CAD model is not
available, one can exploit such high-frame-rate 3D motion
scanning by reconstructing a high-quality point cloud model
first in a short amount of time, and then achieve the same
goal such as calibration error tracking, or pose detection and
measurement in general, which opens the doors for future
research and applications.

4.4. Trade-Offs With Data Redundancy
However, there remains a significant challenge in trade-offs
with data redundancy. The influx of such point cloud data
poses a significant challenge for embedded computation as
well as real-time processing for responsive interaction with
robotic hardware. Unless equipped with powerful hardware,
such richness or even redundancy in point cloud data may
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not be suitable for real-time processing, but more applicable
to the 3D measurement and detection tasks where an educated
decision is to be calculated later. For most robotic manipulation
tasks, the density and quality of the point cloud may
not be the bottleneck of the problem, but the systematic
integration with the target object, intended process, and the
operating environment, which is worthy of discussion in the
future research.

5. CONCLUSION

In this paper, we proposed a novel use of the depth sensors
for a direct hand-eye calibration with a reduced system error.
Instead of using a calibration marker, we adopted the existing,
standardized features on the robot flange as the reference for the
depth sensor. The calibration accuracy is found to be as high as
the camera’s, probing the hardware limit of the robot system.
In particular, with the availability of Photoneo’s MotionCam-
3D camera, we can acquire quality point cloud data in high
resolution, accuracy, and frame rate. This enables us to extend
our proposed method to other geometric features on the robot,
such as the wrist joint, for dynamic tracking of the calibration
errors using the whole body of the robot. The limitation of
this paper includes the camera used, which is a test model
from a specific brand. A future research direction is to test
the proposed method further using different depth sensors of
similar capabilities. Another future direction is to extend the
proposed method to other problems such as pose estimation or
object tracking.
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