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This paper describes a neural network design using auxiliary inputs, namely the

indicators, that act as the hints to explain the predicted outcome through logical

reasoning, mimicking the human behavior of deductive reasoning. Besides the original

network input and output, we add an auxiliary input that reflects the specific logic of the

data to formulate a reasoning process for cross-validation. We found that one can design

either meaningful indicators, or even meaningless ones, when using such auxiliary inputs,

upon which one can use as the basis of reasoning to explain the predicted outputs. As a

result, one can formulate different reasonings to explain the predicted results by designing

different sets of auxiliary inputs without the loss of trustworthiness of the outcome. This is

similar to human explanation process where one can explain the same observation from

different perspectives with reasons. We demonstrate our network concept by using the

MNIST data with different sets of auxiliary inputs, where a series of design guidelines

are concluded. Later, we validated our results by using a set of images taken from

a robotic grasping platform. We found that our network enhanced the last 1–2% of

the prediction accuracy while eliminating questionable predictions with self-conflicting

logics. Future application of our network with auxiliary inputs can be applied to robotic

detection problems such as autonomous object grasping, where the logical reasoning

can be introduced to optimize robotic learning.

Keywords: logic reasoning, neural network, deep learning, robotic grasping, auxiliary input

1. INTRODUCTION

Current artificial neural networks (ANNs) usually focus on the layers of computation between the
input and output for a converging prediction using probabilistic data processing (LeCun et al.,
2015). Inspired by the neurons in animal brains, such ANNs are found useful in solving problems
which were previously difficult to model using rule-based algorithms (Goodfellow et al., 2016).
Both human and artificial learning requires a fair amount of data or examples to establish the
learning outcomes, but the human learning also involves deductive reasoning where a wide range of
hints, i.e., pieces of related-information, to enhance our understanding (Evans et al., 1993; Stenning
and Van Lambalgen, 2012). One challenge between human understanding and a computerized
algorithm is the exact definition of information, which is strictly required for computer programs
but only requires deductive reasoning for the human. One example is through the design and use
of the dictionary, which uses a restricted list of high-frequency words to help the language learners
to understand the explanations and usage of more advanced words (Wittrock, 1974). However, to
explain these high-frequency words, the dictionaries usually require circular definitions of words of
similar or related meanings connected through grammar and example usage to hint the language
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learners to understand with reasons instead of direct
memorization. In educational research, such interactive use
of hints is found to be a useful tool to enhance the students’
learning effectiveness (Munoz-Merino et al., 2011).

Research about learning from hints has been discussed
and incorporated in training neural networks (Abu-Mostafa,
1990). For example, one can consider the full explanation
or mathematical representation of the reasoning process as
a particular case of the hint (Abu-Mostafa, 1993). Suddarth
and Kergosien (1990) proposed a “rule-injection hint” method,
which adds additionally supervised neurons to the network to
improve its performance regarding training time and model
generalization. This pioneering work was further developed
into a subfield of machine learning, namely multi-task learning
(MTL). Caruana (1998) presented evidence and results showing
that inductive transfer can improve the generalization of neural
networks by exploiting the relatedness among multiple tasks.
MTL can also be applied to reinforcement learning (Jaderberg
et al., 2016). Recent research also explores the use of hints from a
teacher network to train student networks that are much thinner
with fewer parameters but comparable performances (Romero
et al., 2015).

Combining research in hint related education and learning
research, a few general rules for hint design could be summarized.
For example, a typical design of the hint should not directly
explain the intended concept in full, but partially suggest
the concept with pieces of indirect but practical information.
Moreover, common usage of the hints is through a series of
logical deductions exhausting all possible hints in combination
with the knowledge learned to arrive at the most likely concept
in question, which is similar to human deductive reasoning from
known clues. The interactive use of hints in human learning and
reasoning can also be observed from games such as flashcard,
hangman, and spelling bees, where the hints are creatively used
in different ways and complexity for specific tasks using logical
reasoning (Wan and Song, 2017b).

Deep learning, as an extension of machine learning, has made
great success in the last few years. Various architectures, such
as dense neural networks (Carpenter et al., 1992), convolutional
neural networks (LeCun et al., 1989, 1998), recurrent neural
networks (Williams and Zipser, 1989) and so on, have been
designed to solve specific types of problems in areas of
computer vision (Krizhevsky et al., 2012; Verschae and Ruiz-
del Solar, 2015), speech recognition (Hinton et al., 2012) and
natural language processing (Collobert and Weston, 2008). Deep
learning models with multiple inputs are also employed to infuse
more information into the models. Chollet (2015) demonstrates
a model, which receives the headline as the main input and extra
data such as the post time of the headline as an auxiliary input, to
predict the popularity of a news headline. For another example,
recent work by Levine et al. (2018) has demonstrated the design
of a stream of image data supplied to the neural network in
parallel to the robot pose information in the Cartesian space to
learn hand-eye coordination for robotic grasping. However, it
remains challenging for these neural networks to be reasonably
understood by a human, except for its underlying probabilistic
fundamentals (Knight, 2017).

In this paper, we propose the design of a neural network
with logical reasoning through the introduction of hints as the
auxiliary input, namely the indicators. A significant difference of
our proposed network is a dynamic reasoning process using these
hints to cross-validate the predicted results, which eliminates
those with conflicting logics based on the hints used. While
reducing the inevitable uncertainties in the data, our proposed
network can also be explained using the given hints as the logical
basis for human understanding. However, such explanation is
also constrained by our understanding of the hints. This is similar
to the situation in human reasoning where one can formulate
different arguments to explain the same observation using
different ways of logical deduction. One potential application of
such auxiliary input to a neural network and the logical reasoning
is in robotic learning tasks where multiple inputs of different
sources and magnitudes can be fused into a network of learning.

For all problems dealing with inevitable uncertainties of new
input, there should be a new label of yconflict that raises questions
when inconsistent results are obtained. Humans reason in a
similar way when we reach a contrary conclusion from a given
input of vague clarity or confusing information (Stenning and
Van Lambalgen, 2012), one would naturally question the answer
rather than give an illogical one. Our research suggests an
interactive interpretation and use of the label information as both
input (i.e., hints) and output without compromising the learning
outcomes. The abstraction of the indicators can potentially play a
more critical role in the understanding of the hidden information
in the input data. The generation process for the indicators can
be a meaningful one, or randomized, depending on the hint
designs. When specific underlying patterns are observable in the
labels, the introduction of the indicators as the auxiliary input
will contribute information that helps the learning process with a
possible explanation.

The next section further explores the design variations of
the indicators as the auxiliary input for the proposed neural
network structure using the MNIST example and a new data
set collected from robotic grasping. Section 3 compares the
experimental results and discusses the design principles when
generating these indicators from the labels. Section 4 discusses
a potential application of the proposed neural network with
auxiliary inputs in robotic learning for object grasping. Final
remarks, limitations and future work are enclosed in the last
section, which ends this paper.

2. THE DESIGN OF A NEURAL NETWORK
WITH HINTS

The introduction of hints for logical reasoning is the primary
differentiation behind our proposed network, which aims at
direct or indirect suggestions bridging the input data and the
output labels with a logical decision-making process. Since these
indicators are suggestions abstracted from the original data,
i.e., images and labels, a review of the information embedded
in these images and labels become essential. In general, the
labeled outcome usually corresponds to a comprehensive and
sophisticated question that is hard to answer and therefore
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cannot be easily modeled using the existing knowledge. Although
the final reply to the question may be framed as a simple Yes
or No, one could usually break down the question into further
details for more specific inquiry. For example, in the problem
of identifying the breed of a cat from a collection of different
cat and dog breeds, one can approach the answer by taking
two steps: (1) what is the animal in general and (2) what is the
specific breed of this animal. Such operation may have different
logical complexities depending on how one strategize to obtain
the solution. It is similar to the scenario when people are trying to
find solutions to the same problem. Some may follow the existing
procedures that are straightforward but difficult in practice, while
others might identify particular patterns from the questions and
possible answers to formulate a logical process that narrows down
the maxim. Our network is similar to the latter one, trying to
mimic deductive human intelligence using the hints.

2.1. The Auxiliary Input and New Labels
Before our training starts, we are presented with a set of input
data with labeled output as the prior information. In our proposed
neural network shown in Figure 1, the original input is still used
as the primary input XN = {x1, x2, ..., xN}. Also, we generate
a set of auxiliary input to the network, namely the indicators,
by categorizing the original labels YM =

{

y1, y2, ..., yM
}

. Since
the understanding of these labels is not directly linked to
the input, we can exploit such indirect knowledge that is not
presented in the prior data to categorize these output labels,
which can be a meaningful process or even a randomized one.
The resultant indirect suggestions become a set of indicators
ZL = {z1, z2, ..., zL} which usually has a smaller dimension than
the original labels (L < M) as a conceptual abstraction. For
logical modeling, any original input xi shall be led to its original
output yi through the involvement of a particular indicator zi that
suggest this correct computation. When computing this original
input xi with all other indicators, a new label yconflict becomes
necessary to differentiate these illogical outcomes from the logical
one. Therefore, we shall have a set of new labeled output
YM+1 =

{

y1, y2, ..., yM , yconflict
}

when training our network.
One can further exploit the concept of hints by designing
multi-dimensional or direct indicators. One can also design a
new set of restructured labels from the original input data for
more advanced logical learning. Both of these scenarios will be
explored in the later sections of this paper.

2.2. New Architecture for Logical Learning
Our proposed network takes a primary input xi and an auxiliary
one zi to model a new set of labeled output yi during training,
as shown in Figure 1. This neural network is structurally
different by adding a process that establishes a certain logical
relationship in the original data. The advantage of our network
is the full exploitation of the existing understandings of the
problem through the design of meaningful indicators and the
establishment of logical reasoning. Later we will also show
that the training process can be further exploited by designing
randomized indicators to suggest unknown relationships and
reduce the data and logic uncertainty.

Since our auxiliary input is an artificial one, we are only
provided with the original input to proceed with our prediction.
For example, as shown in Figure 2, when a new input x1 is
presented, our proposed neural network on the right will exhaust
all possible indicators in ZL. To logically determine a reasonable
prediction, we start by counting whether the number of yconflict
predicted equals to L − 1, which means that only one non-
conflicting label is predicted after the exhaustion of all possible
indicators. If so, the next logical check is to determine if the one-
and-only non-conflicting label complies with the corresponding
indicator used to predict this non-conflicting label. If this one-
and-only non-conflicting label passes both logical reasoning tests,
then a logical result is obtained by our network. Otherwise, an
illogical result will be reached with a statement such as “fail to
predict a logical output.” This process differentiates our proposed
network from the existing ones, where an output label will always
be computed without cross-validating the logic behind.

2.3. The Adapted MNIST Data
The MNIST data is an extensive image collection of handwritten
digits labeled from zero to nine, consisting of a training set of
60,000 examples and a test set of 10,000 examples, which is
widely adopted as a benchmarking dataset for learning research
and practice (LeCun et al., 1998). Researchers usually adopt the
common neural network which uses the images as the input
data XN×28×28×1 and the ten digits as the output labels Y10

as shown in Figure 3. In practice, the model outcomes are
effectively labeled in the one-hot format which corresponds
to the ten different digits. These ten digits are treated as
ten independent categories disregarding their mathematical
meanings and relationships behind. This direct learning method
is comparable to the way we approach the dictionary for the
meaning of a new word. However, it hardly reflects the logical
and interactive way we naturally adopt when using words in a
language, which requires understanding the logic behind.

The example in Figure 4 shows the training setup with a set of
two indicators, with z1 suggesting the label being smaller than five
and z2 suggesting otherwise. The training of our network involves
the combination of the primary input and all possible indicators.
For example, with an image of digit zero as the input, we generate
the label when this image and indicator z1 are used, which leads
to the correct label of y1 = 0. In the meanwhile, we also generate
another label when this image and the other indicator z2 are used,
which leads to the conflicting output label of yconflict . This process
essentially tells our network to learn both sides of the knowledge,
including the correct and conflicting ones. The introduction of
this new label yconflict enables our network to capture the logic of
this new knowledge during training, which will be used for the
logical reasoning when testing our network.

Testing our network involves an exhaustive computation
between a given primary input and all possible indicators, and
a logical reasoning process trying to make sense out of the
predicted results. The example in Figure 5 demonstrates the case
when an image x1 of digit 1 is used for testing. Our network
compute L = 2 label outputs that correspond to all combinations
of x1 and z1, and x1 and z2 as the input pairs. Then, in the
logical reasoning flow, we first check if the total number of
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FIGURE 1 | The design of a neural network with an auxiliary input generated from labels to improve learning accuracy.

yconflict predicted equals to L − 1, meaning that only one non-
conflicting label is predicted. Then, we further check if this non-
conflicting label complies with the corresponding indicator used
for its computation. A logical result can only be obtained when
a non-conflicting label complies with the indicator used for its
computation. If the set of predicted labels fail to pass any of
these two logical checks, we can still arrive at an output label
by selecting those with lower computation confidence, just like
the method used in the common neural networks. However,
this will only result in illogical results, which the existing neural
network can not detect. An extreme example is when one supplies
an entirely irrelevant image to a neural network, like a picture
of a cat instead of a hand-written digit. The existing neural
network will process it with a labeled output, possibly with very
low confidence, asking for manual checking. It corresponds to
a statement such as “the most probable recognition of this new
image is a digit ...”. However, our network can identify all possible
labels computed to collectively suggest an illogical output, which
corresponds to a statement such as “no logical recognition can
be computed,” suggesting something is wrong with this image or
the model currently in use for this task based on the knowledge
learned.

For demonstration, the original MNIST data has been adapted
in various ways in the following section by introducing different
designs of the indicators to restructure the neural network. In
principle, we can design a few sets of the indicators to suggest the

ten digits according to (1) the meaning of the indicators, (2) the
total number of indicators, and (3) the number of labels suggested
by each indicator.

We first design four sets of indicators marked as 11–14
in Table 1 with mathematical meanings. The ten digits are
divided into two categories, including case 11 of smaller than
5 or not (equally divided), case 12 of even number or not
(equally divided), case 13 of prime number or not (unequally
divided), and case 14 of zero or not (unequally divided).
We also randomly generate four sets of indicators marked as
21–24 in Table 1 with different total counts of L and size
distributions. All sets of indicators in Table 1 provide indirect
suggestions to all ten digit labels except for cases 14 and 24.
Case 14 contains a direct suggestion of an indicator zero to
label zero, and case 24 contains direct suggestions of the ten
indicators to the ten digit labels respectively. Both designs of
the indicators violate the general design guidelines of hints as
defined earlier. More specifically, case 14 represents a partial
violation of the hints with a direct suggestion of digit 0 whereas
case 24 accounts for a total breach of a specific suggestion
of all ten digits. However, whether such violation is a bad
design remains an open question, which will be discussed
later.

Since the indicators should only provide indirect suggestions,
we can also design new prediction models as shown in Table 1

by interchanging the labels and the indicators used in our
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FIGURE 2 | An example of the computation flow in the proposed network with logical reasoning.

FIGURE 3 | The MNIST data and a common neural network widely used in machine learning.

network. One particular design of the indicators is a multi-
dimensional indirect suggestion. For example, each digit can
be simultaneously identified as smaller than five and an even

number. This corresponds to case 31 in Table 1 where a set of
two-dimensional indicators carries the meanings of both cases 11
and 12. Another special design is through the exchange of the
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FIGURE 4 | An example of our proposed neural network with auxiliary inputs for training using an adapted MNIST data with two indicators, suggesting original labels

smaller than five or not, as the auxiliary input.

indicators and labels to formulate a revered prediction, as shown
in case 32 in Table 1. A further special design is to hide the exact
information of the ten digit by using indirect suggestions in both
indicators and labels, such as the case 33 in Table 1. Note that in
this case, since we are losing the exact information of the specific
digit on the image, we can only do the first layer of the logic check
for conflicts but cannot proceed to the second layer of the logic
check for compliance.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

We benchmark our models with the MNIST data using a
Convolutional Neural Network that contains three convolutional
layers (5 × 5 × 1 × 4 with stride 1, 4 × 4 × 4 × 8
with stride 2, and 4 × 4 × 8 × 12 with stride 2) and
two fully connected layers (588 × 200 and 200 × 10). The
test accuracy of the benchmark model maximizes at 98.91%

after 10,000 training steps with training batch equals to
100. One can further improve the accuracy by referring to
Görner (2016) using more advanced techniques such as more
layers, batch normalization, dropout and ReLu layers, which
are not used in our experiments. We further tested our
network using a dataset collected from the DeepClaw robotic
grasping platform, which will be explained at the end of this
section.

All experiment results are reported in Table 1. The Logical
Results column refers to the percentage of the 10,000 MNIST
testing examples that pass the two layers of logical checks. This
self-checking mechanism leads to two prediction accuracies of
interest. The Logical Accuracy indicate the prediction accuracy of
the logical results. The Overall Accuracy indicate the prediction
accuracy of all results, including the Illogical ones with failed
classification. Note that in our experiments, it is unlikely for the
overall accuracy to be higher than 98.91% in the original network
when no logical reasoning is considered.
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FIGURE 5 | An example of our proposed neural network with auxiliary inputs for a logical output using the MNIST data.

3.1. Any Indicator Is a Good Indicator for
Logical Reasoning
As shown in Table 1, all logical results are above 99%
prediction accuracy, higher than the original neural network’s
benchmarking prediction accuracy at 98.91%. We observed
statistical significance in the different prediction accuracies
between the logical and overall results with a p-value of 0.0037
among cases 11–33. Irrespective of the indicator designs,
our results suggest enhanced trustworthiness by eliminating
the illogical predictions, which is not available in the original
neural network. Common neural networks only adopt the direct
information presented in the data but ignores the logic behind,
which is usually a reasoning process of human thinking instead
of memorizing past events using brutal force computation. These
logics help to deal with the uncertainties in the future events.
The robustness of the results shown in Table 1 demonstrates the
effectiveness of the proposed logical learning through a neural
network with auxiliary inputs. These indicators are flexible in
design to provide indirect (cases 11–13 and 21–23) or direct
(cases 14 and 24) suggestions for the labeled outputs. Moreover,
the designs and understandings of these indicators are the prior
knowledge that the human operators had previously acquired
from the given dataset for artificial learning.

3.2. Logical Complexity Positively Relates
to the Confidence of a Logical Answer
As shown in Table 1, three levels of concept in cases 1x, 2x,
and 3x are used to represent different logical complexities

when designing the indicators. Those generated from random
partially reflects a certain degree of unknown logic with

the highest complexity, whereas the meaningful ones are

more straightforward for human understanding. The count of
indicators is also an important aspect to reflect the complexity

of the logical reasoning in our networks. For example, every

added indicator would boost the required training by one fold

as we traverse all the indicators. Furthermore, the distribution of

each indicator and the labels it suggests also present a statistical
influence that correlates to the distribution of the input data. In

general, we can divide these eight experiments into four groups

according to their logic complexities.We observe a growing trend
of logical accuracy as the logic complexity increases, as shown in
Figure 6.

• Case 14 reflects the group with the least logical complexity,
which shares the most similarity to the original MNIST data
with the lowest logical accuracy of 99.00%, but still higher than
the original network. This is effectively a direct indication for
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TABLE 1 | Experiment designs and prediction results of the auxiliary inputs as the indicators for the MNIST data.

No Indicator meanings Indicator characteristics Output labels Logical results (%) Logical accuracy (%) Overall accuracy (%)

11 Smaller than 5 2 indicators Ten digits 99.48 99.24 98.72

or not equally distributed (5, 5)

12 Even number 2 indicators 99.49 99.21 98.70

or not equally distributed (5, 5)

13 Prime number 2 indicators 99.57 99.13 98.70

or not unequally distributed (4, 6)

14 Zero or not 2 indicators 99.90 99.00 98.90

unequally distributed (1, 9)

21 None 2 indicators 99.36 99.17 98.54

equally distributed (5, 5)

22 None 2 indicators 99.40 99.32 98.72

unequally distributed (3, 7)

23 None 5 indicators 98.79 99.39 98.19

equally distributed (2 × 5)

24 None 10 indicators 98.53 99.41 97.95

equally distributed (1 × 10)

31 Case 11 + case 12 4 indicators Ten digits 98.97 99.33 98.31

combining Cases 11 and 12

32 Ten digits 10 indicators Case 11 97.33 99.36 96.71

equally distributed (1 × 10)

33 Case 12 2 indicators Case 11 99.58 99.33 98.91

equally distributed (5-5)

images of zero and a reduced MNIST prediction without the
zeros. Such simplicity on logic leads to the highest percentage
of passing the logical checks at 99.90%.

• The second group contains cases 11, 12, and 21 with
slightly more complex logical relationships, which are either
meaningful or randomized indicators, and all have a set of two
indicators suggesting an equal number of labels. An average
logical accuracy of 99.21% is reached with the percentage of
passing the logical checks reduced slightly to 99.44%.

• The third group consisting of cases 13, 22, and 23 presents
more complexity in all three aspects of indicative meaning,
indicator count, and size distribution. For example, both cases
13 and 23 have unequal size distributions comparing to Group
2. Moreover, the total count of indicators increases to five even
though the size distribution stays equal. This group achieves
an increased average logical accuracy of 99.28% with a 99.25%
passing rate of the logical checks.

• The fourth group only contains case 24, which is the most
complex logic with ten indicators of direct suggestions for
training. It produces the highest logical accuracy of 99.41%.
The side effect of such restrict logic is that the passing rate of
the logical checks only 98.53%, the lowest in our experiments.

3.3. Logical Result Is at the Cost of Overall
Accuracy
The logical result offers us with a prediction with enhanced
trustworthiness when dealing with the unknown uncertainties

of a question, i.e., a new input data. The prediction accuracy of
the overall result also provides us with a way to compare our
network with the original one.We also plotted the trend of overall
prediction accuracies of the four experiment mentioned above in
Figure 6. A decreasing trend can be observed as the accuracy of
the logical results increases. The percentage of logical pass also
shows a strong influence on the overall prediction accuracy in
Figure 6. This is possibly caused by the rapid decrease in the
logical pass, which is about three times faster than the increase
in logical accuracy. The following equation can be used to reflect
such relationship.

OverallAccuracy = LogicalAccuracy× LogicalPass (1)

3.4. Meaningful Indicators Are Not That
Good, and Direct Suggestions Are Not That
Bad
Another observation is about the design of the indicators in
their meanings and suggestive strength. Among the cases 1x with
meaningful indicator designs, the differences in the prediction
accuracies between logical and overall results exhibited statistical
significance with a p-value of 0.0290. Among cases 2x with
directly suggestive indicators, we observed a similar statistical
significance with an even smaller p-value of 0.0198. Comparing
cases 11, 12, and 21, we see that the meanings of the
indicators only present a slight increase in the prediction
accuracy of the logical results from 99.17% to 99.21–99.24%.
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FIGURE 6 | The average results of the four case groups of the normal indicators used.

One probable explanation is that the computers do not perceive
such mathematical relationships much differently from the
randomized ones. This is different from the human learning,
which requires the meaningful perception of the concepts
to better understand. This partially reflects the underlying
difference between the humans and the machines, where
such slight increase in the understanding makes a significant
difference in the autonomy of minds.

While designing these indicators, we intentionally tried to
mimic the human use of hints indirectly as introduced at the
beginning of this paper. Among the eight normal experiments,
only cases 14 and 24 involves direct 1-to-1 suggestions between
the indicators and the labels. These two cases outperformed the
rest ones in logical accuracy. All eight experiments present an
average logical accuracy at 99.23% (0.0014 standard deviations)
and an average overall accuracy of 98.55% (0.0032 standard
deviations). From our results, it seems challenging to draw a
clear distinction between the effects between direct and indirect
suggestions.

3.5. Special Design and Use of the
Indicators
We also list a few special cases in Table 1 to demonstrate the
versatile design and use of the indicators in our network, with
interesting results reported in Table 1.

Case 31 is a two-dimensional design of the indicators which
combines case 11 and case 12. The result shows an increase in the
prediction accuracy of the logical result of 99.33%, but a decrease
in the passing rate of the logical check to 98.97%. In principle, it is
possible to design such multi-dimensional indicators. However,
the major difference is more operational instead of numerical.
Multi-dimensional indicators require each input to be supplied

withmultiple indicators instead of one as shown in Figure 1. This
design is equivalent to four one-dimensional indicators.

Case 32 is a reversed prediction by exchanging the labels
and indicators in case 11. The primary interest of this case
is the application of our network when the number of the
indicators are larger than the number of labels. In this case,
we use ten meaningful indicators to suggest two possible
labels given an input data. The passing rate of the logical
check is found to be the smallest among all experiments,
suggesting the highest logical complexity and resulting in
the lowest overall prediction accuracy. However, we did not
suffer any significant decrease in logical accuracy, which
remains at a relatively high level of 99.36%. This case requires
the same amount of computation as case 24 to traverse
all indicators. By applying the conclusion of “meaningful
indicators are not that good, and direct suggestions are not
that bad” obtained in the last section, it seems reasonable
to introduce a random set of indicators whose size is bigger
than that of the output labels to reach a reasonably high
logical accuracy. This is especially useful when the cost of data
acquisition is high, such as autonomous robotic grasping task,
which will be further explored with more details in the next
section.

The last case 33 completely buries the explicit information
of the ten numerical digits in the data. The overall accuracy
is the highest among all normal and special neural networks
with auxiliary inputs at 98.91%. It is interesting to notice
that this result coincides with the original neural network’s
prediction accuracy. The result for case 33 suggests that
the use of hints may be the most suitable one for indirect
suggestions to effectively address unknown uncertainties and
find new knowledge that was not previously expressed in the
original data. One drawback of case 33 is that the second
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logic check cannot be performed as we cannot decide if
a number smaller than five is an even number or not.
Further research is required to dive further into this kind of
problem.

3.6. Experiment Using Image Data
Collected From DeepClaw
We further experimented our network using a dataset of 10,000
images collected by a DeepClaw platform as shown in Figure 7.
Ten daily life objects were used to perform autonomous grasping
tasks to pick up an object and put it back with a random pose to
the table. One end of a transparent fish line is tied to the object
through a hole in the center of the table while the other end is
tied to a weight. Each time the object is released, the weight under
the table will pull the object back to the table center at a random
pose. Only the images taken by the camera in the center were
used, and each object is picked up 1,000 times. Further details of
this robotic setup are available on a Github repository (Wan and
Song, 2017a).

To test our network, we adopted the same network structure
as cases 21 and 23 to design the indicators for the ten objects,
which are randomly generated. 9,000 of the images were used
for training and the rest 1,000 were used for testing. Each
image is labeled in the original data and similar to the MNIST
data, the network’s goal was to classify them correctly into
ten categories. As shown in Table 2, a typical neural network
can already classify these ten objects with 98.0% accuracy,
which is comparable to the MNIST data. However, in two
experiments using our network with 2 or 5 random indicators
for these ten objects, we can further improve the accuracy to

FIGURE 7 | The DeepClaw grasping setup mimicking the arcade claw

machine game using a UR5 robot arm, a Robotiq gripper, a Kinect for Xbox

One camera at the center, and a PC with NVidia Titan X 12G GPU to pick up

objects from the table. Ten daily life objects were used with 2 sample pictures

shown in the middle. One thousand grasping attempts were performed on

each object in the collected dataset.

98.5 or 99.4% using logical reasoning. Our results demonstrated
consistent observations from previous experiments using the
MNIST data. The introduction of the indicators further improved
the prediction accuracy in both Cases 41 and 42. With more
indicators, or more complex indicators, case 42 is observed
to outperform case 41 in logical accuracy. This is at the cost
of a lower percentage of logical results and overall accuracy,
which is caused by the increase in illogical predictions detected
by the increased number of indicators. The logical reasoning
behind our results is embedded in the design of indicators,
which provides a structure of understanding to the results
produced by the neural networks. Although we still cannot
literately understand the meaning of the results using these
randomly generated indicators, our network provides a possible
structure of taxonomy through these hints to approach a
possible interpretation, which is not available in the previous
literature.

4. FINAL REMARKS AND FUTURE WORK

In this paper, we proposed the concept of logical learning through
a neural network with auxiliary inputs, namely indicators,
generated from the original labels, or even the original input
data. The logical learning can always generate results with a
higher logical accuracy that is supported by a reasoning process.
We further demonstrated the robustness of our proposed logical
learning in a series of simple and special indicators using the
MNIST data and a set of image data from robotic grasping.
A few guidelines are summarized below to help assist the
design and use of our network. The proposed method provides
us with a way to reflect the logical reasoning process while
trying to comprehend more advanced concepts. It enables
one to model the unknown unknowns without the loss of
trust when a new and uncertain input is supplied. This
process can be a meaningful one through the design of the
indicators when established a prior understanding of the data
is available, or a randomized one when the focus is only on a
possible logic for a reasonable answer instead of the meaning
behind.

• Any indicator is a good indicator for logical reasoning;
• Logical complexity positively relates to the confidence of an

answer;
• Logical result is at the cost of overall accuracy;
• Meaningful indicators are not that good, and direct

suggestions are not that bad;
• The design of the indicators is not limited by our

understanding of the data.

The advancement of computing capabilities enables one to use
brutal force to compute using neural networks for the most
probable answer without caring much into the logic behind.
The average percentage of passing logical checks in the MNIST
experiments is at a relatively high level of 99.32%, leaving only
a small fraction of data marked as illogical. However, this is
mainly due to the high quality and simplicity of the MNIST data,
which is slightly different yet consistent with our object image
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TABLE 2 | Comparison between neural networks without (Case 40), with 2 random (Case 41), and with 5 random (Case 42) auxiliary inputs using grasping images

collected from the DeepClaw platform, where the introduction of indicators differentiate illogical predictions with improved logical accuracies using logical reasoning.

No Auxiliary indicators Logical results (%) Logical accuracy (%) Overall accuracy (%)

40 Common network with no indicators Not applicable Not applicable 98.0

41 Random 2 indicators for 10 objects 96.8 98.5 95.3

42 Random 5 indicators for 10 objects 95.4 99.4 94.8

data from robotic grasping. It is particularly challenging when
the cost of getting training data is expensive, especially when
data collection requires physical interactions with the external
environment, such as in robotics. When only a limited amount of
data is available, it becomes necessary to utilize all aspects of the
data, including the logical reasoning, physical meaning, as well as
environmental parameters, etc., for a potential solution with the
most trustworthiness.

There are several limitations of this study which requires
further research into such auxiliary input. Although widely
adopted as a benchmark in neural network research, the MNIST
dataset is relatively small in size and simple in structure. This
limited the design of indicators used in this paper, which are
confined to cases such as a prime number or not, even or
odd number, etc. Furthermore, it still requires further research
into a more thorough design of the indicators to fully explore
the theoretical foundations and implications of these auxiliary
inputs. Last but not the least, issues such as the computation time
and efficiency were not discussed in this paper, which needs to be
further optimized on a general basis.

While the scope of this paper is to introduce the concept of
logical learning using our network as the indicators, future work
requires systematic research into the comprehensive and logical
design of the indicators and our network. Another possible future
work is the implementation of the proposed neural network
design in robotic learning, such as object grasping. Robotic
learning tasks present a realistic scenario where inputs collected
from various sensors in the robotic hardware are gathered to
perform an integrated task with physical interactions to the
real world. This is different from most visual, audio, or text-
based learning tasks where only the information is processed
instead of physically interacting with the world. This difference
imposes a major source of uncertainties to robotic learning,
making it a potential application of logical reasoning with
auxiliary inputs to improve the creditability of the learning
outcomes.

In the example of detection problems such as robotic grasping
tasks, a general purpose hardware platform can be setup which
involves a multi-axis robotic arm, a multi-finger gripper, a tray of
objects for grasping, a camera for visual sensing and a learning
computer with a robotic controller for control and computation.
Similar robotic platforms have been reported in various recent
publications with different level of hardware complexity but
usually at an expensive cost. For example, the Baxter robot with

two 7-DOF arms and 2-finger parallel gripper is used by both
by Pinto and Gupta (2016) and Lenz et al. (2015). Research
groups at the University of California, Berkley have used various
robotic systems, including a fleet of 7–14 custom-built 7-DOF
arms by Google with adaptive 2-finger grippers (Levine et al.,
2018), or Yumi 7-DOF armwith 2-finger parallel gripper (Mahler
et al., 2017). Similar neural networks were adopted in these works
(Lenz et al., 2015; Pinto and Gupta, 2016; Mahler et al., 2017;
Levine et al., 2018), where the primary input will be the images
taken from the tray, and the output labels will be the grasping
success or failure. Specifically, in work by Levine et al. (2018), an
auxiliary input is also used besides the primary input. However,
they are from independent sources, both of which connect to
the output labels. Thus there is no logical reasoning behind
these models. Future work will focus on structurally simplify
the object grasping tasks using a setup as shown in Figure 7

by mimicking the arcade claw machine (Wan and Song, 2017a)
to implement the proposed network design for object grasping
tasks.
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