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A network of four Bennett linkages is proposed in this paper. Totally five types of overconstrained
5R and 6R linkages, including the generalized Goldberg 5R linkage, generalized variant of the
L-shape Goldberg 6R linkage, Waldron's hybrid 6R linkage, isomerized case of the generalized
L-shapeGoldberg 6R linkage, and generalizedWohlhart's double-Goldberg 6R linkage, can be con-
structed bymodifying this Bennett network. The 8R linkage formed by Bennett network serves as
the basic mechanism to realise the reconfiguration among five types of overconstrained linkages
by rigidifying some of the eight joints. The work also reveals the in-depth relationship among the
Bennett-based linkages,which provides a substantial advancement in thedesign of reconfigurable
mechanisms using overconstrained linkages.
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1. Introduction

Reconfigurable mechanism involves the design philosophy of fulfilling multiple tasks in different configurations using one com-
prehensivemechanism or integrated system. A recent review by Kuo, Dai and Yan [1] summarized the principals to change the topol-
ogies and/or configurations ofmechanisms, including the number of effective links and/or joints, the kinematic pairs on certain joints,
the adjacency and incidence of certain links and/or joints and the relative topology between links and/or joints. These principals could
be separately applied or comprehensively hybridized to form different strategies for reconfigurable mechanism design. Based on ro-
botic automation and systematic integration, several reconfigurable robotic platforms have been developed on the re-assembly of
identical or similar robotic modules [2–4]. Some modular reconfigurable robotic systems have been applied to factory automation
purpose [5,6]. In the theoretical study, the kinematotropic mechanisms are the reconfigurable mechanisms whose global mobility
can be changedwith positional parameter actuations at the bifurcation points [7]. A number of kinematotropic mechanismswith sin-
gle or multiple loops were developed [8–10]. The metamorphic mechanism, a type of reconfigurable mechanismwith variable topol-
ogy and mobility during operation [11], has received wide recognition during the past decade.

From the perspective of kinematic singularity, overconstrained spatial linkages recently emerged as a good resource for designing
such advanced mechanisms. Overconstrained linkages with two operation modes were proposed using the type synthesis method
[12]. A number ofmultifunctional 7R linkageswere designedby inserting oneoverconstrainedmobile chain into a closed-loop 7R link-
age [13]. Recently, the possibilities to design the operation form of a 4R linkage with an overconstrained 6R linkage have been also
explored [14].

The Bennett linkage is the only spatial overconstrained 4R linkage with joint axes neither concurrent nor parallel [15–17]. A num-
ber of linkages reported thereafter bear the similarities in using Bennett linkage as the basic element to generate more complex
3
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overconstrained linkages, which form the Bennett-based linkage family [18]. Goldberg [19] used two or three Bennett linkages
merged on the common links and then collinearly rigidified adjacent links to build 5R and 6R linkages. More generalized forms of
these Goldberg 5R and 6R linkages could be obtained by varying the kink angles [19,20]. The 5R and 6R linkages proposed by
Myard [21] and the extended Myard 5R linkage [22] were actually special cases of the Goldberg's 5R and 6R linkages [23]. A hybrid
6R linkage was proposed by Waldron [24,25] with two Bennett linkages sharing a common revolute joint axis. A series of double-
Goldberg 6R linkages were later constructed using methods similar as Goldberg's [20,26]. The method of isomerization [27] reveals
the connection between linkages in the Bennett-based family and the Bricard-related one [28–30]. Baker [18] proposed variants of
the L-shape and serial Goldberg 6R linkages, which exhibit different topologies among the Bennett linkages during construction.
Using numerical methods, Mavroidis and Roth [31] and Dietmaier [32] found that different overconstrained 6R linkages exhibit geo-
metric properties of Bennett ratios. These linkages not only share the common elements of Bennett linkages, but also exhibit certain
topology of the constructing Bennett linkages to enable motion, which will be addressed in this paper.

One of the most important and fundamental methods to build overconstrained linkages is the superposition (or subtraction) of
Bennett linkages on the links sharing the same geometric conditions, which was firstly proposed by Goldberg [19]. Take the general-
ized Goldberg 5R linkage in Fig. 1 as an example. Bennett linkage A is made of links a/α and c/γwith joints 1, 2, 0, and 5. And, Bennett
linkage B ismade of links b/β and c/γwith joints 5, 0, 3, and 4. Here, the notion of a/α indicates that the length and twist of this link are
a and α, respectively, which could be applied similarly for the other links that appeared in this paper. In order to form a Goldberg 5R
linkage, we firstly superpose linkages A and B on their common link 05 in grey dash lines, and fix the kink angle θkink between links 20
and 03 to a value. Then, links 20 and 03 are rigidified into one link. After removing the common link 05 and common joint 0, a 5R link-
age is obtained with single degree of freedom (DoF).

Here, in order to design the reconfigurable mechanism among the Bennett-based linkages, the topology of a network with four
Bennett linkages ismodified byfixing certain joints. This paper is organized as follows. In Section 2, a network of four Bennett linkages
is introduced and the method to form the possible one-DoF 6R linkages is investigated. Section 3 explains the detailed construction
and identification for all possible resultant single-loop overconstrained 6R and 5R linkages. Section 4 demonstrates the reconfigura-
tion among the different cases of the resultant linkages. The discussions in Section 5 demonstrate the reconfiguration between
Bennett linkage and other 6R linkages. Conclusions are enclosed in Section 6.

2. A network of four Bennett linkages and its related Bennett-based linkages

The Bennett linkage requests that the opposite links arewith the same link length, twist and Bennett ratio. Then, a network of four
Bennett linkages A, B, C, and D can be constructed as shown in Fig. 2, which are made of links a/α, b/β, c/γ, and d/δ with the same
Bennett ratio [15,16,23],
sin α
a

¼ sin β
b

¼ sin γ
c

¼ sin δ
d

: ð1Þ
Such a spatial network of four Bennett linkages was firstly discussed by Goldberg [33] when he investigated the type K linkage of
Kempe [34] in three-dimensional space. Later, comprehensive analysis about this networkwas conducted to explore its geometry and
its relationship to the Kempe's type K linkage [35,36]. A single Bennett linkage has one DoF. The DoF of this network can be obtained
analytically by setting θA,B,C,D as the inputs of Bennett linkages A, B, C and D, respectively.
θA þ θB þ θC þ θD ¼ 2π ð2Þ
is held for any possiblemotion configuration. So three of them are independent to determine the configuration of the network. There-
fore, the Bennett network in Fig. 2 has three DoF.
Fig. 1. The generalized Goldberg 5R linkage, note that the rigid parts that connect adjacent joints are the common normals.



Fig. 2. The network of four Bennett linkages A, B, C and D.
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The Bennett-based linkages are a family of four-bar, five-bar and six-bar single-loop overconstrained linkages with only one DoF.
In order to explore the relationship between the network of four Bennett linkages in Fig. 2 and its related Bennett-based linkages, the
topology has to bemodified by reducing the number of active joints in this network possibly to six, five or four, and form a single-loop
mechanism with one DoF.

First, in order to reduce the number of links to six, two joints on the peripheral loop are selected and fixed. Thus, the two links con-
nected by such joint on the peripheral loop are rigidified into one link. Next, the four links inside the network are removed to achieve a
single-loop mechanism. For the example in Fig. 3, when joints 1 and 4 are selected, the motions of link-pairs 81–12 and 34–45 are
constrained. After removing the four links 02, 04, 06 and 08 inside the network, a single-loop mechanism with six active joints,
i.e., a 6R linkage, can be obtained. Since the DoF of the network is 3, we should expect that the resultant 6R linkage is one DoF after
fixing two joints. Considering the circular sequence of the joint number, there are only six possible combinations on the selection
of two joints from the eight joints on the peripheral loop as listed in Table 1, inwhich the thick solid lines and the black dot in between
represent the rigidified link-pair and thefixed joint, and the four links in dash lines and joint 0 are to be removed.Next,we are going to
analyse each case individually.
3. Network modification and linkage identification

3.1. Cases I & II: Generalized Goldberg 5R linkage

When joints 1 and 2 are fixed in Fig. 4(a), links 81, 12, and 23 become rigid and Bennett linkages A and B become immobile, i.e.
joint 3 is passively fixed and link-pair 80–04 is rigidified as well. Then, the right half of the network with linkages C and D becomes
a generalized Goldberg 5R linkage with one DoF. After removing the four links inside the loop, the 6R linkage is in fact a generalized
Goldberg 5R linkage with joint 3 immobile. Similarly, when joints 1 and 3 are fixed, i.e. Case II in Table 1, see Fig. 4(b), the left half of
(a) (b) (c)

Fig. 3. The modification process demonstrated: (a) the original network; (b) joints 1 and 4 are fixed; and (c) the four links in the centre are removed.



Table 1
All possible combinations on the selection of two fixed joints.

Case Selected two joints for fixing (and duplicates) Simplified representations Schematics

I 1/2,
(or 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, 8/1)

n/n + 1

II 1/3,
(or 3/5, 5/7, 7/1)

Odd/odd + 2

III 1/4,
(or 2/5, 3/6, 4/7, 5/8, 6/1, 7/2, 8/3)

n/n + 3

IV 1/5,
(or 3/7)

Odd/odd + 4

V 2/4,
(or 4/6, 6/8, 8/2)

Even/even + 2

VI 2/6,
(or 4/8)

Even/even + 4

(a) (b) 

Fig. 4. The modification of the Bennett network into Cases I & II linkages: (a) the Case I linkage with joints 1 and 2 fixed and (b) the Case II linkage with joints 1 and 3
fixed.
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(a) (b)

Fig. 5. Themodification of the Bennett network into Case III linkage: (a) the schematics of the modification process of Case III linkage; and (b) linkage identification in
special configuration.
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the network will be immobile as well, with joint 2 passively fixed. Thus, the network is essentially a generalized Goldberg 5R linkage
with only one DoF after removing the four links at the centre. Therefore, Cases I and II linkages are of the same type.
3.2. Case III: Generalized variant of the L-shape Goldberg 6R linkage

As shown in Fig. 5(a), when joints 1 and 4 are fixed, links 82 and 35 are introduced as rigid links. We can identify the resultant
linkage by inspecting its special case when link-pairs 81–12 and 34–45 are collinearly rigidified, see Fig. 5(b). Bennett linkage A con-
tracts into a straight line, while joints 0 and 1 are constrained along this line. It forms a variant of the L-shape Goldberg 6R linkage pro-
posed by Baker [18]. In the general case that the link-pairs 81–12 and 34–45 are rigidified at any kink angles, the resultant 6R linkage
in Fig. 5(a) can be considered as a generalized variant of the L-shape Goldberg 6R linkage with one DoF.
3.3. Case IV: Waldron's Hybrid 6R linkage

In Fig. 6(a), when joints 1 and 5 are fixed, links 82 and 46 are rigid links. The resultant 6R linkage can be considered as Bennett
linkages B and D with the same Bennett ratio sharing the common joint 0. Following the construct method of the Waldron's hybrid
6R linkage, a 6R linkage in Fig. 6(b) can be obtained, which is the same as the linkage in Fig. 6(a) kinematically. Therefore the Case
IV linkage belongs to Waldron's hybrid 6R linkage [24,25].
(a) (b)

Fig. 6. Themodification of the Bennett network into Case IV linkage: (a) the schematics of themodification process of Case IV linkage; and (b) linkage identification for
the Case IV linkage.



(a) (b)

Fig. 7. The modification of the Bennett network into Case V linkage: (a) the schematics of the modification process of Case V linkage; and (b) linkage identification for
the Case V linkage.
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3.4. Case V: Isomerized generalized L-shape Goldberg 6R linkage

As shown in Fig. 7(a), when joints 2 and 4 are fixed, links 13 and 35 are rigid links. To identify the resultant linkage, we can inspect
the loop connected by joints 1, 3, 5, 6, 0 and 8, which is a generalized L-shape Goldberg 6R linkage [19]. When replacing link-pair
60–08 by link-pair 67–78 in Fig. 7(b), an isomerized case [27] of the linkage will be obtained. Therefore, the resultant linkage is an
isomerized case of the generalized L-shape Goldberg 6R linkage, which has only one DoF.

3.5. Case VI: Generalized Wohlhart's double-Goldberg 6R linkage

In Fig. 8(a), when joints 2 and 6 are rigidified, links 13 and 57 are rigid links. Then Bennett linkages A and B form a generalized
Goldberg 5R linkage. So do the linkages C and D. The resultant linkage can be identified as the 6R linkage merged from two Goldberg
5R linkages on common link 80 and 04, see Fig. 8(b), which is in fact a generalized Wohlhart's double-Goldberg 6R linkage with one
DoF [20].

In this paper, we focus on the geometric construction and reconfiguration among the linkages in these five cases. The kinematic
analysis of the five types of resultant linkages has been done individually in previous study. Therefore, the detailed kinematic deriva-
tion is not given here. However, we have carried out all the necessarywork on the kinematic analysis as shown in Appendix A section.

4. Reconfiguration among five cases of Bennett-based linkages

By fixing two of eight joints on the peripheral loop of the Bennett network and removing four links in the centre, there are five
linkages obtained. Due to this common construct process, it should be expected that these five linkages can be reconfigured into
(a) (b) 

Fig. 8. Themodification of the Bennett network into Case VI linkage: (a) the schematics of themodification process of Case VI linkage; and (b) linkage identification for
the Case VI linkage.



(a) (b) (c)

Fig. 9. Reconfiguration process from (a) a Case IVWaldron's hybrid 6R linkage, through (b) fixing kink angles on joints 2 and 4, to (c) a Case V isomerized generalized
Goldberg L-shape 6R linkage after releasing kink angles on joints 1 and 5.
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each other by changing the fixed joints referring to Table 1. For example, the linkage in Fig. 9(a) with joints 1 and 5 fixed is a Case IV
Waldron's hybrid 6R linkage. Then, we can fix joints 2 and 4 to make the linkage immobile in the current configuration, see Fig. 9(b).
After relaxing joints 1 and 5, the resultant 6R linkage is mobile, which is the Case V isomerized generalized L-shape Goldberg 6R link-
age, as shown in Fig. 9(c). Thus, Fig. 9 shows the reconfiguration process between two of five Bennett-based linkages we constructed
from the Bennett network.

An example of possible reconfiguration sequence is demonstrated in Table 2 with geometric parameters as Eq. (3). It starts from
the Cases I & II Goldberg 5R linkage moving in its own kinematic path marked in black in Fig. 10(a). When it moves to a desired con-
figuration P13(23) where θ4=−30.00π/180, we could fix joint 4, see Fig. 10(b), and then release joint 2 in Fig. 10(c). As a result, a Case
III generalized variant of the L-shape Goldberg 6R linkage can be obtained, whose kinematic path is plotted in the black dash lines in
Fig. 10. P13(23) is located at the intersection between the kinematic paths of Cases I (or II) and III linkages. Similarly, moving Case III
linkage to a desired configuration at P34 in Fig. 10(d) with joint 5 fixed and joint 4 released, a Case IV Waldron's hybrid 6R linkage
is obtained, whose kinematic path is in grey solid line in Fig. 10. Furthermore, this linkage is reconfigured into Case V isomerized gen-
eralized L-shape Goldberg 6R linkage at P45, then into Case VI generalized Wohlhart's double-Goldberg 6R linkage at P56.
Table 2
An exam

Revol

θ1

θ2

θ3

θ4

θ5

θ6
(outp
θ7
(inpu
θ8
a ¼ 1:0000; α ¼ −125:00π=180;
b ¼ 0:6104; β ¼ −150:00π=180;
c ¼ 0:4175; γ ¼ −20:00π=180;
d ¼ 0:7847; δ ¼ −40:00π=180:

ð3Þ
The reconfiguration process shown above is only an example for demonstration. Depending on the design request, one can choose
different sets of joints from Table 1 to be fixed, then form a sequence of reconfiguration process as Table 2, and finally achieve the
ple of reconfiguration sequence among all six possible linkage cases from the network of four Bennett linkages.

ute variables Case I Case II Case III Case IV Case V Case VI

Fixed at

− 75:00π
180

Fixed at

− 75:00π
180

Fixed at

− 75:00π
180

Fixed at

− 75:00π
180

Movable Movable

Fixed at
84:68π
180

(Passively fixed at
84:68π
180 )

Movable Movable Fixed at

− 26:24π
180

(Passively fixed at

− 33:06π
180 )

Fixed at

− 33:06π
180

Movable

Movable Movable Fixed at

− 30:00π
180

Fixed at
40:00π
180

Fixed at
40:00π
180

Movable Fixed at

− 90:00π
180

Movable Movable

ut)
Movable

t)
Fixed at

− 20:00π
180



(b)

(a)

(d) (e) (f)
(g)

(c)

(h)

(i)

Fig. 10.Map of reconfiguration among five cases of linkages from the Bennett network. Themovable joints are in black colour and the rigidified link-pairs and joints are
in grey colour. (a) Case I (II) linkage with joints 1 and 2 (or 1 and 3) fixed; (b) reconfiguration from Case I (II) to Case III linkages at configuration P13(23); (c) Case III
linkage with joints 1 and 4 fixed; (d) reconfiguration from Case III to Case IV linkages at configuration P34; (e) Case IV linkage with joints 1 and 5 fixed;
(f) reconfiguration from Case IV to Case V linkages at configuration P45; (g) Case V linkagewith joints 2 and 4 fixed; (h) reconfiguration from Case V to Case VI linkages
at configuration P56; and (i) Case VI linkage with joints 4 and 8 fixed.
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reconfiguration among different linkages cases as Fig. 10, whose physical model is shown in Fig. 11. And the reconfiguration points
could be any point on the corresponding kinematic path. It is decided by the kinematic property of different linkages and the desired
configurations to conduct the reconfiguration between the linkages.

5. Discussions

Besides the 5R and 6R linkages, it is worth discussing the possibilities to achieve single-loop overconstrained 4R linkage, i.e., a
Bennett linkage, out of the Bennett network. The geometric conditions of the Bennett linkage require zero offsets on all links
[15–17]. To fulfil this condition, the simplest case is to rigidify link-pairs collinearly, i.e., making the kink angles to be either 0 or π
[37,38]. As a result, there are two special configurations that are worth noticing. One is when the link-pairs on joints 1, 3, 5, and 7
are constrained into a line, and the network will therefore contract into a line, which is a degenerated configuration. The other con-
figuration is when the link-pairs on joints 2, 4, 6, and 8 are constrained into a line as shown in Fig. 12. In this configuration, the resul-
tant networkwill have only fourmovable joints. A single-loopmechanism can be achieved after removing the four links at the centre.
The following geometry constraint must be fulfilled to achieve a Bennett linkage.
sin α þ βð Þ
aþ b

¼ sin γ þ δð Þ
cþ d

: ð4Þ
Considering Eqs. (1) and (4), we have
tan
α
2
tan

γ
2
¼ tan

β
2
tan

δ
2
: ð5Þ
Under Eq. (5), Cases V and VI linkageswill be degenerated into Bennett linkageswith either two ormore joints fixed [39]. Thenwe
will get a linkage reconfigurable among Goldberg 5R linkage, generalized variants of L-shape Goldberg 6R linkage, Waldron's hybrid
6R linkage and Bennett linkage.



Fig. 11. The physical model to demonstrate the motion and reconfiguration corresponding to Fig. 10.
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Finally, we should point out that the reconfiguration among those five linkages can be conducted at any configuration as long as it
can be constructed into the network of four Bennett linkages as we initially proposed. Recent work reveals that the Bennett-based
linkages could bifurcate from the constructed form into non-constructed form when the linkages have the collinear configuration,
which will be addressed in a later paper. Once the linkage moves into the non-constructed form, which cannot be constructed with
two or three Bennett linkages, such as Wohlhart's double-Goldberg 6R linkage [30], it cannot be reconfigured into other Bennett-
based linkage by simply changing the fixed joints. Meanwhile, as the 8R linkage formed by the peripheral loop of Bennett network
has three DoF, its working space will be much larger than the sum of five resultant 5R/6R linkages. So during the reconfiguration,
the joints must be fixed first to lock the configuration before releasing the previously fixed joint. Otherwise, the 8R linkage will
move to the non-constructive configurations, which will cause the failure of reconfiguration process. However, when the kink angles
Fig. 12. A special configuration of Bennett linkage from the reconfigurable Bennett network.
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at joints 2, 4, 6, and 8 are not 0 or π, theremight be some extra condition tomake the resultant linkagewith zero-offset at joints 1, 3, 5,
and 7 to form a Bennett linkage. Due to the complexity in geometry, the detailed derivation is not covered in this paper. So the com-
pleted solution to form a Bennett linkage from the reconfigurable Bennett network is still open.

6. Conclusions

In this paper, a network of four Bennett linkages has been proposed. By modifying the topology of this Bennett linkage network,
five overconstrained 5R and 6R linkages have been obtained with only one DoF. The resultant linkage cases are generalized Goldberg
5R linkage, generalized variant of the L-shape Goldberg 6R linkage,Waldron's hybrid 6R linkagewith zero common offset, isomerized
case of the generalized L-shape Goldberg 6R linkage and generalizedWohlhart's double-Goldberg 6R linkage. Theywere originally de-
rived by using different methods, and now correlated under the same construction basis of the Bennett network. Reconfiguration
among these five linkage cases has been realised by fixing different set of joints, which paves the way for potential applications of
such reconfigurable mechanisms in engineering design.
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Appendix A

Once the link-pair is rigidifiedwith the fixed joint in the linkage, it is necessary to obtain the geometric parameters of the rigidified
link in the resultant linkage for the kinematic analysis. As shown in Fig. A1, link-pair 12–23 and joint 2 are fixed. Then the link 13 can
be defined by the geometric parameters a13,α13, R1, and R3, which are equivalent to the length, twist angle, and offsets of the rigidified
link respectively. To calculate these parameters, geometric relationship in the spatial triangle 123 can be used, which leads to
tan θ01 ¼ − sin β sin θkink
sin α cos β þ cos α sin β cos θkink

;

tan θ03 ¼ − sin α sin θkink
sin β cos α þ cos β sin α cos θkink

;

tan α13 ¼ sin α sin θkink sin θ03− sin α cos β cos θkink cos θ
0
3− cos α sin β cos θ03

cosα cos β− sinα sin β cos θkink
;

a13 ¼ b cos α sin β þ b sin α cos β cos θkink þ a cos α sinβ cos θkink þ a sinα cos β
sin α sin θkink sin θ03− sinα cos β cos θkink cos θ

0
3− cosα sin β cos θ03

; ðA1Þ
(a) (b)

Fig. A1. The geometric parameters of rigidified link: (a) zero offset on joint 2; (b) non-zero offset on joint 2.



Table A
The refe

Case

I & II
III
IV
V
VI
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R1 ¼ a cos β sin θkink cos θ
0
3 þ a cos θkink sin θ03 þ b sin θ03

− sin α sin θkink sin θ03 þ sin α cos β cos θkink cos θ
0
3 þ cos α sin β cos θ03

;

R3 ¼
ða cos α cos β sin θ03 cos θkink þ b cosα cos β sin θ03 þ a cos α sin θkink cos θ

0
3

−b sinα sin β cos θkink sin θ03−a sinα sin β sin θ03Þ
sin α sin θkink sin θ03− sinα cos β cos θkink cos θ

0
3− cosα sin β cos θ03

:

Here, joint angles θ1′ and θ3′ are introduced as intermediate variables, which are the differences of the joint revolute variables mea-
sured on the original and resultant linkages. Eq. (A1) is only for the situation that the offset on joint 2 is zero as shown in Fig. A1(a).
When there is an offset R2 on joint 2 as shown in Fig. A1(b), which is the situation for Goldberg 5R linkage in Case I/II, the geometric
parameters become
tan θ01 ¼ − sin β sin θkink
sin α cos β þ cos α sin β cos θkink

;

tan θ03 ¼ − sin α sin θkink
sin β cos α þ cos β sin α cos θkink

;

tan α13 ¼ sin α sin θ kink sin θ03− sinα cos β cos θkink cos θ
0
3− cosα sin β cos θ03

cos α cos β− sin α sinβ cos θkink
;

a13 ¼
ðb cosα sin β þ b sinα cos β cos θkink þ a cosα sin β cos θkink þ a sin α cos β
−R2 sinα sin β sin θkinkÞ

sin α sin θkink sin θ03− sin α cos β cos θkink cos θ
0
3− cosα sin β cos θ03

; ðA2Þ

R1 ¼ R2 sin β cos θ03−a cos β sin θkink cos θ
0
3−a cos θkink sin θ03−b sin θ03

sin α sin θkink sin θ03− sinα cos β cos θkink cos θ
0
3− cosα sin β cos θ03

;

R3 ¼

ða cos α cos β sin θ03 cos θkink þ b cosα cos β sin θ03 þ a cos α sin θkink cos θ
0
3

−b sinα sin β cos θkink sin θ03−a sinα sin β sin θ03 þ R2 cos θkink cos θ
0
3

−R2 sin α cos β sin θkink sin θ03Þ
sin α sin θkink sin θ03− sinα cos β cos θkink cos θ

0
3− cosα sin β cos θ03

:

Kinematics of thefive resultant linkages have beenwell-studied by other researchers, see the references listed in Table A. The foun-
dation of kinematic analysis in this case is to identify the geometric parameters of the rigidified linkwhich have been discussed above.
Applying the derived parameters into the closure equations, kinematic analysis of each linkage will be accomplished.

From previous work, it can be found that it is difficult to obtain analytical explicit solution to closure equations for some
3D overconstrained linkages. So numerical methods, such as Singular Value Decomposition (SVD) [14,30], has been applied as an
effective tool to acquire kinematic paths of the linkages, even to find the new 3D linkages [32]. In this paper, we also used the SVD
method to obtain all the kinematic paths as follows for the five reconfigurable cases with the same geometric parameters given in
Eq. (3).
rences on the kinematics of the resultant linkages derived from the reconfigurable Bennett network.

Linkage References on kinematics

Generalized Goldberg 5R linkage [18,20]
Generalized variant of the L-shape Goldberg 6R linkage [18,20]
Waldron's hybrid 6R linkage with zero offset [18]
Isomerized case of the generalized L-shape Goldberg 6R linkage [18]
Generalized Wohlhart's double-Goldberg 6R linkage [20]



Fig. A2. The kinematic paths of Case I & II: generalized Goldberg 5R linkage.

Fig. A3. The kinematic paths of Case III: generalized variant of the L-shape Goldberg 6R linkage.

Fig. A4. The kinematic paths of Case IV: Waldron's hybrid 6R linkage with zero offset.
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Fig. A5. The kinematic paths of Case V: isomerized case of the generalized L-shape Goldberg 6R linkage.

Fig. A6. The kinematic paths of Case VI: generalized Wohlhart's double-Goldberg 6R linkage.
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