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Kinematic Study of the Original
and Revised General Line-
Symmetric Bricard 6R Linkages
In this paper, the solutions to closure equations of the original general line-symmetric
Bricard 6R linkage are derived through matrix method. Two independent linkage clo-
sures are found in the original general line-symmetric Bricard 6R linkage, which are
line-symmetric in geometry conditions, kinematic variables and spatial configurations.
The revised general line-symmetric Bricard 6R linkage differs from the original linkage
with negatively equaled offsets on the opposite joints. Further analysis shows that the re-
vised linkage is equivalent to the original linkage with different setups on joint axis direc-
tions. As a special case of the general line-symmetric Bricard linkage, the line-symmetric
octahedral Bricard linkage also has two forms in the closure equations. Their closure
curves are not independent but joined into a full circle. This work offers an in-depth
understanding about the kinematics of the general line-symmetric Bricard linkages.
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1 Introduction

The Bricard linkages comprise three deformable octahedrons:
the line-symmetric octahedral case, the plane-symmetric octa-
hedral case, and the doubly collapsible octahedral case [1];
and three spatial linkages: the general line-symmetric case, the
general plane-symmetric case, and the trihedral case [2]. Bri-
card later pointed out that the line-symmetric octahedral case is
a special case of the general line-symmetric linkage case [2,3].
Baker studied all cases of Bricard linkages systematically and
derived their closure equations [3]. Later, Phillips reviewed the
Bricard linkages and their relationship with other overcon-
strained linkages [4,5].

The octahedral cases of Bricard linkages attracted a number
of kinematic studies. A comprehensive analysis to the three
octahedral cases was done by Bennett [6]. Baker noticed the
relationship of a special line-symmetric octahedral Bricard
linkage in stationary and linkage configurations with respect to
the conformation of cyclohexane molecular in chair and boat
forms [7]. The closure equations of the three octahedral cases
of Bricard linkages were derived analytically using matrix
transformation method by Lee [8]. Recently, Chai and Chen
found out that the line-symmetric octahedral Bricard linkage
with identical twists and offsets always has a stationary structural
configuration, which is independent of its mobile linkage form
[9]. In engineering applications, the octahedral cases of Bricard
linkages are related to parallel manipulators, such as the Stewart–
Gough manipulator [10–12] and triangular symmetric simplified
manipulators [13,14], which are widely used as flight simula-
tors and milling machines. The independent work by Nelson
demonstrated the possibility of building large network of poly-
hedral with the octahedral cases of Bricard linkages [15].

As for the three linkage cases, a plate-form model of the trihe-
dral Bricard 6R linkage was made and analyzed by Goldberg [16].
Yu [17] studied the geometry of the trihedral case with respect to
its circumscribed sphere and associated hyperboloid. Wohlhart’s

early work [18] showed that there are two distinct trihedral cases
of Bricard linkages. Due to the special geometry constraint of the
Bricard linkages, the reciprocal screw system is extensively used
for analysis of such mechanisms. Using the reciprocal screw sys-
tem, it was found that for any configuration of the general line-
symmetric Bricard linkage, the central axis of the linear complex
defined by the joint axis is orthogonally intersected to the link-
age’s line of symmetry [19]. The reciprocal screw system of the
general plane-symmetric six-screw linkage was also analyzed by
Baker [20], which covers the plane-symmetric case of Bricard
linkages. Based on the direct elimination method with optimiza-
tion theory, Lee [21] proposed a numerical scheme to solve the re-
ciprocal screw system of the Bricard linkages, which gives the
necessary solutions to a given linkage, and it is not sufficient to
present all possible solutions. Recently, a threefold-symmetric
Bricard linkage was proposed to explore the application of Bricard
linkage for the design of deployable structures [22]. A special
line-symmetric and plane-symmetric Bricard linkages were ana-
lyzed with regards to its unique bifurcation behaviours [23]. Fur-
ther attempt was made to find and identify possible solutions of
spatial 6R mechanism with three adjacent parallel axes [24], and
the research on the Wohlhart’s symmetric mechanism [25], which
is usually identified as the Wohlhart’s hybrid 6R linkage [26,27],
explores the industrial application of this linkage as a translator.

To conduct the kinematic study of the general line-symmetric
Bricard linkage, the D-H parameters [28] in Fig. 1 are commonly
adopted and a homogeneous transformation matrix could be
assembled as

Tiðiþ1Þ ¼
R3�3 d3�1

01�3 1

" #

¼

coshi �cosaiðiþ1Þ sinhi sinaiðiþ1Þ sinhi aiðiþ1Þ coshi

sinhi cosaiðiþ1Þ coshi �sinaiðiþ1Þ coshi aiðiþ1Þ sinhi

0 sinaiðiþ1Þ cosaiðiþ1Þ Ri

0 0 0 1

2
6666664

3
7777775

(1)
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The geometry conditions of the original general line-symmetric
Bricard linkage are

a12 ¼ a45; a23 ¼ a56; a34 ¼ a61

a12 ¼ a45; a23 ¼ a56; a34 ¼ a61

R1 ¼ R4; R2 ¼ R5; R3 ¼ R6

(2)

Although the closure equations of the general line-symmetric
Bricard linkage have been derived by Baker [3], it requires
more elaborations about these equations for a better under-
standing. Due to the line-symmetric geometry, the revolute
variables of the original line-symmetric Bricard linkage are
positively equaled on the opposite joints as h1 ¼ h4, h2 ¼ h5,
and h3 ¼ h6 [3]. Yet, a numerical search of new and revised
overconstrained linkages was conducted by Mavroidis and
Roth [29], where a revised closure of the general line-
symmetric Bricard linkage was found with negatively equaled
offsets on the opposite joints as below:

a012 ¼ a045; a023 ¼ a056; a034 ¼ a061;

a012 ¼ a045; a023 ¼ a056; a034 ¼ a061;

R01 ¼ �R04; R02 ¼ �R05; R03 ¼ �R06

(3)

It was obtained from numerical method that the revolute variables
in the revised general line-symmetric Bricard linkage are nega-
tively equaled on the opposite joints as h01 ¼ �h04, h02 ¼ �h05, and
h03 ¼ �h06 [29]. Despite the similar relationship in geometry con-
ditions and kinematic variables, the original and revised line-
symmetric Bricard linkages are usually considered as two distinct
linkages.

The original line-symmetric Bricard linkage is with perfect
line-symmetry property in both geometric parameters and ki-
nematic variables, while the revised one is without line-
symmetry property in both aspects, but exhibits a line-
symmetric configuration in the full-cycle motion. Therefore,
the focus of this paper is to study the kinematics of the
general line-symmetric Bricard linkage and to explore the
relationship between the original and revised general line-
symmetric Bricard linkages. When deriving the closure equa-
tions, only the relationship among the geometric parameters
is taken into account. However, the relationship among the
kinematic variables is not considered initially. Instead, it will
be the conclusion derived from the closure equations. The
layout of this paper is as follows. The solutions of closure
equations of the original and revised linkages are derived in
Secs. 2 and 3, respectively. Section 4 discusses the relation-
ship between the original and revised linkages. Conclusion
and further discussions are drawn in Sec. 5, which ends the
paper.

2 The Solutions of Closure Equations of the Original

General Line-Symmetric Bricard Linkage

The simplified geometry conditions of the original general line-
symmetric Bricard linkage are

aiðiþ1Þ ¼ aðiþ3Þðiþ4Þ; aiðiþ1Þ ¼ aðiþ3Þðiþ4Þ; Ri¼Rðiþ3Þði¼ 1;2;3Þ
(4)

Note that to ensure this is a close-loop 6R mechanism, the sub-
scripts must be the remainder of 6 in positive numbers. The clo-
sure condition is

T12T23 � � �T61 ¼ I (5)

which could be represented as

Tiðiþ1ÞTðiþ1Þðiþ2ÞTðiþ2Þðiþ3Þ ¼ T�1
ðiþ5Þðiþ6ÞT

�1
ðiþ4Þðiþ5ÞT

�1
ðiþ3Þðiþ4Þ (6)

In the transformation matrix in Eq. (1), the angular parameters,
including twist and revolute variable, are stored in both rotational
matrix R3�3 and translational vector d3�1. The length parameters,
including link length and offset, are only stored in the translational
vector d3�1. In Eq. (6), we may first use the rotational matrix
R3�3 to derive the relationship among the angular parameters, and
then introduce the length parameters using the translational vector
d3�1 to derive the solutions of closure equations. Here, the entry
(1, 1) in Eq. (6) is extracted and reformed as

cos hi cos hiþ1 cos hiþ2

� cos hiþ3 cos hiþ4 cos hiþ5

 !

�
sin hi sin hiþ1 cos hiþ2

� sin hiþ3 sin hiþ4 cos hiþ5

 !
cos aiðiþ1Þ

�
cos hi sin hiþ1 sin hiþ2

� cos hiþ3 sin hiþ4 sin hiþ5

 !
cos aðiþ1Þðiþ2Þ

þ
sin hi sin hiþ2

� sin hiþ3 sin hiþ5

 !
sin aiðiþ1Þ sin aðiþ1Þð1þ2Þ

�
sin hi cos hiþ1 sin hiþ2

� sin hiþ3 cos hiþ4 sin hiþ5

 !
cos aiðiþ1Þ cos aðiþ1Þðiþ2Þ ¼ 0

(7)

Equation (7) must always hold no matter what the values of twist
angles are. Thus, one nontrivial solution is when the items in ev-
ery bracket of Eq. (7) are zero, i.e.,

cos hi cos hiþ1 cos hiþ2 � cos hiþ3 cos hiþ4 cos hiþ5 ¼ 0 (8a)

sin hi sin hiþ1 cos hiþ2 � sin hiþ3 sin hiþ4 cos hiþ5 ¼ 0 (8b)

cos hi sin hiþ1 sin hiþ2 � cos hiþ3 sin hiþ4 sin hiþ5 ¼ 0 (8c)

sin hi sin hiþ2 � sin hiþ3 sin hiþ5 ¼ 0 (8d)

sin hi cos hiþ1 sin hiþ2 � sin hiþ3 cos hiþ4 sin hiþ5 ¼ 0 (8e)

Substituting Eq. (8d) into Eq. (8e) gives

cos hiþ1 ¼ cos hiþ4 (9)

From Eq. (8d), we have

sin hi

sin hiþ3

¼ sin hiþ5

sin hiþ2

(10)

Fig. 1 The setup of the Denavit and Hartenberg’s parameters
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By substituting i ¼ 1; 2; 3 into Eqs. (9) and (10), we have

cos h2 ¼ cos h5; cos h3 ¼ cos h6; cos h4 ¼ cos h1 (11)

and

sin h1

sin h4

¼ sin h6

sin h3

¼ sin h5

sin h2

(12)

Considering the domain of definition that hi 2 ½�p;pÞ and Eqs.
(8a)–(8c), the following relationships can be obtained from Eqs.
(11) and (12):

positive relationship; hi ¼ hiþ3 (13a)

negative relationship; hi ¼ �hiþ3 (13b)

In the above process, entry (1, 1) of the transformation matrix
in Eq. (6) is selected for the derivation of the relationships shown
as Eq. (13). Alternatively, we can also use entries (2, 2) and (3, 3)
in Eq. (6) to derive the same relationships in Eq. (13). Note that
these entries are all located in the rotational matrix, which con-
tains only the rotational information during coordinate transfor-
mation of the links and joints.

Then, the link length and offset located in the translational vector
can be considered to derive the solutions of closure equations.
Among the simplified expressions of the translational vectors shown
in Eq. (14), entry (3, 4) consists of the least unknown variables

d1 ¼ Tð1;4Þðhi; hiþ1; hiþ2; hiþ4; hiþ5Þ ¼ 0 (14a)

d2 ¼ Tð2;4Þðhi; hiþ1; hiþ2; hiþ4; hiþ5Þ ¼ 0 (14b)

d3 ¼ Tð3;4Þðhiþ1; hiþ2; hiþ4; hiþ5Þ ¼ 0 (14c)

By substituting the relationship in Eq. (13) into Eq. (14c), for dif-
ferent subscript numbers, we have that

• when i ¼ 1, the relationship between h2 and h3 can be derived
• when i ¼ 2, the relationship between h1 and h3 can be derived
• when i ¼ 3, the relationship between h1 and h2 can be

derived

To form the closure equations, h1 is taken as the input. Then,
only the relationship between h1 and h2;3 will be obtained in the
following process. Together with Eq. (13), the complete set of sol-
utions to the closure equations for the original general line-
symmetric Bricard 6R linkage will be obtained.

2.1 Positive Relationship: hi ¼ hiþ3. Firstly, we consider the
case of positive relationship in Eq. (13a) that hi ¼ hiþ3, where the
revolute variables follow the property of line-symmetry. When
i ¼ 3, substituting Eq. (13a) into Eq. (14c) gives

ða12 sin a34 þ a34 sin a12 cos a23Þ sin h1

� ðR2 sin a12 sin a34 þ R3 sin a12 cos a23 sin a34Þ cos h1

þ ða12 sin a23 þ a23 cos a34 sin a12Þ sin h2

� ðR1 sin a12 sin a23 þ R3 sin a12 sin a23 cos a34Þ cos h2

þ R3 sin a23 sin a34 sin h1 sin h2

þ ða34 cos a12 sin a23 þ a23 sin a34Þ sin h1 cos h2

þ ða23 cos a12 sin a34 þ a34 sin a23Þ cos h1 sin h2

� R3 cos a12 sin a23 sin a34 cos h1 cos h2

þ R1ðcos a12 cos a23 þ cos a34Þ

þ R2ðcos a23 cos a12 cos a34Þ

þ R3ð1þ cos a12 cos a23 cos a34Þ ¼ 0 (15)

The above equation can be simplified as

A2 sin h1 þ B2 cos h1 þ C2 sin h2 þ D2 cos h2

þ E2 sin h1 sin h2 þ F2 sin h1 cos h2 þ G2 cos h1 sin h2

þ H2 cos h1 cos h2 þ L2 ¼ 0 (16)

in which

A2 ¼ þða12 sin a34 þ a34 sin a12 cos a23Þ
B2 ¼ �ðR2 sin a12 sin a34 þ R3 sin a12 cos a23 sin a34Þ
C2 ¼ þða12 sin a23 þ a23 cos a34 sin a12Þ
D2 ¼ �ðR1 sin a12 sin a23 þ R3 sin a12 sin a23 cos a34Þ
E2 ¼ þR3 sin a23 sin a34

F2 ¼ þða34 cos a12 sin a23 þ a23 sin a34Þ
G2 ¼ þða23 cos a12 sin a34 þ a34 sin a23Þ
H2 ¼ �R3 cos a12 sin a23 sin a34

I2 ¼ þ R1ðcos a12 cos a23 þ cos a34Þ
þ R2ðcos a23 þ cos a12 cos a34Þ
þ R3ð1þ cos a12 cos a23 cos a34Þ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(17)

After the tangent half-angle substitution of sin h2 and cos h2, Eq.
(16) can be rewritten into

ðA2 sin h1 þ B2 cos h1 þ L2Þ

�ðD2 þ F2 sin h1 þ H2 cos h1Þ

" #
tan2 h2

2

þ 2ðC2 þ E2 sin h1 þ G2 cos h1Þ tan
h2

2

þ
ðA2 sin h1 þ B2 cos h1 þ L2Þ

þðD2 þ F2 sin h1 þ H2 cos h1Þ

" #
¼ 0

(18)

Again, Eq. (18) can be further simplified as

Aterm2 � tan2 h2

2
þ Bterm2 � tan2 h2

2
þ Cterm2 ¼ 0 (19)

in which h1 is represented in

Aterm2 ¼ ðA2 sin h1 þ B2 cos h1 þ L2Þ
�ðD2 þ F2 sin h1 þ H2 cos h1Þ

Bterm2 ¼ 2ðC2 þ E2 sin h1 þ G2 cos h1Þ
Cterm2 ¼ ðA2 sin h1 þ B2 cos h1 þ L2Þ

þðD2 þ F2 sin h1 þ H2 cos h1Þ

8>>>>>>><
>>>>>>>:

(20)

Solutions to Eq. (19) are

tan
h2

2
¼ �Bterm26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2 � 4Aterm2 � Cterm2

p
2Aterm2

(21)

in which all symbols are defined in Eqs. (17) and (20). The closure
relationship between h1 and h2 is therefore obtained. Similarly, by
analysing Eqs. (13a) and (14c) with i ¼ 2, the relationship
between h1 and h3 can be derived as

tan
h3

2
¼ �Bterm36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

3 � 4Aterm3 � Cterm3

p
2Aterm3

(22)
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where

Aterm3 ¼ ðA3 sin h1 þ B3 cos h1 þ L3Þ
�ðD3 þ F3 sin h1 þ H3 cos h1Þ

Bterm3 ¼ 2ðC3 þ E3 sin h1 þ G3 cos h1Þ
Cterm3 ¼ ðA3 sin h1 þ B3 cos h1 þ L3Þ

þðD3 þ F3 sin h1 þ H3 cos h1Þ

8>>>>>>><
>>>>>>>:

(23)

and

A3 ¼ þða12 cos a23 sin a34 þ a34 sin a12Þ
B3 ¼ �ðR2 sin a12 cos a23 sin a34 þ R3 sin a12 sin a34Þ
C3 ¼ þða23 cos a12 sin a34 þ a34 sin a23Þ
D3 ¼ �ðR2 cos a12 sin a23 sin a34 þ R1 sin a23 cos a34Þ
E3 ¼ þR2 sin a12 sin a23

F3 ¼ þða12 sin a23 cos a34 þ a23 sin a12Þ
G3 ¼ þða23 sin a12 cos a34 þ a12 sin a23Þ
H3 ¼ �R2 sin a12 sin a23 cos a34

I3 ¼ þ R1ðcos a12 cos a23 þ cos a34Þ
þ R2ð1þ cos a12 cos a23 cos a34Þ
þ R3ðcos a23 þ cos a12 cos a34Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(24)

Because not all of the entries in the transformation matrix in
Eq. (6) are included in the derivation process, the above results
only demonstrate the necessary conditions for the closure relation-
ship among the revolute variables. To ensure the closure, Eqs.
(13a), (21), and (22) have been taken into the transformation ma-
trix to check whether Eq. (5) is held for the general geometric pa-
rameters. In such a way, two sets of solutions to the closure

equations are obtained to achieve different linkage closures as
follows:

h2 ¼ 2 tan�1 �Bterm2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2 � 4Aterm2 � Cterm2

p
2Aterm2

 !

h3 ¼ 2 tan�1 �Bterm3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

3 � 4Aterm3 � Cterm3

p
2Aterm3

 !

h4 ¼ h1

h5 ¼ h2

h6 ¼ h3

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(25)

and

h2 ¼ 2 tan�1 �Bterm2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2 � 4Aterm2 � Cterm2

p
2Aterm2

 !

h3 ¼ 2 tan�1 �Bterm3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

3 � 4Aterm3 � Cterm3

p
2Aterm3

 !

h4 ¼ h1

h5 ¼ h2

h6 ¼ h3

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(26)

Results shown in Eqs. (25) and (26) indicate that there are two
distinct forms of the original general line-symmetric Bricard 6R
linkage, both with the property of line-symmetry, named as Form
I linkage and Form II linkage, respectively. Their kinematic paths
are plotted in Figs. 2 and 3. Their spatial configurations are

Fig. 2 The kinematic paths of the original Form I general line-symmetric Bricard 6R linkage

Fig. 3 The kinematic paths of the original Form II general line-symmetric Bricard 6R linkage
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illustrated in Figs. 4 and 5, in which the lines of symmetry are
identified as the central lines in front views and dashed circles in
top views. The geometry parameters of the original general line-
symmetric Bricard linkages in Figs. 2–5 are set as

a12;45 ¼ 2:40; a23;56 ¼ 2:90; a34;61 ¼ 1:50 (27a)

a12;45 ¼ 4p=18; a23;56 ¼ 8p=18; a34;61 ¼ 13p=18 (27b)

R1;4 ¼ 0:50; R2;5 ¼ 0:55; R3;6 ¼ 0:42 (27c)

The singularity behaviours of these two linkage forms are exam-
ined with the singular value decomposition method, which is a nu-
merical method to solve the singular values of the linkage’s
Jacobian matrix [30,31]. It is found that these two kinematic paths
are solely existed without any bifurcation points, see Fig. 6.
Therefore, from Figs. 2, 3, and 6, we can conclude that these two
linkage forms are independent with no common configurations
under the same geometry conditions.

2.2 Negative Relationship: hi ¼ �hiþ3. For the case of nega-
tive relationship, the revolute variables do not follow the line-
symmetry property. We can follow the same procedure as the pos-
itive relationship to derive the solutions to the closure equations.
However, when substituting the results into the transformation

matrix, the closure condition in Eq. (5) is not held. Thus, no
closed linkage could be achieved with hi ¼ �hiþ3, which means
the negative relationship of hi ¼ �hiþ3 is untrue for the original
general line-symmetric Bricard linkage.

3 The Solutions of Closure Equations of the Revised

General Line-Symmetric Bricard Linkage

The simplified geometry conditions of the revised general line-
symmetric Bricard linkage are

a0iðiþ1Þ ¼ a0ðiþ3Þðiþ4Þ; a0iðiþ1Þ ¼ a0ðiþ3Þðiþ4Þ

R0i ¼ �R0ðiþ3Þði ¼ 1; 2; 3Þ (28)

The only difference between the geometry conditions of the origi-
nal and revised linkages is the offset conditions. And entry (1, 1)
is in the rotational matrix. Thus, Eq. (7) applies for both the origi-
nal and revised linkages. Therefore, Eqs. (13a) and (13b) also can
be obtained for the revised general line-symmetric Bricard
linkage.

3.1 Positive Relationship: h0i ¼ h0iþ3. For the case of positive
relationship, the revolute variables follow the line-symmetry

Fig. 4 The spatial configuration of the original Form I general line-symmetric
Bricard 6R linkage when hI

1 ¼ p=3

Fig. 5 The spatial configuration of the original Form II general line-symmetric
Bricard 6R linkage when hII

1 ¼ p=3
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property. We can follow the same procedure as Sec. 2.1 to derive
the solutions to the closure equations. However, when substituting
the result into the transformation matrix, the closure condition in
Eq. (5) is not held. Thus, no closed linkage could be achieved
with h0i ¼ h0iþ3, which means the positive relationship of h0i ¼ h0iþ3

is untrue for the revised general line-symmetric Bricard linkage.

3.2 Negative Relationship: h0i ¼ �h0iþ3. The same procedure
could be carried out to derive the solutions of closure equations
for the case of negative relationship. As a result, the following
two sets of solutions to the closure equations are concluded to pro-
duce two different linkage closures, which are named as the Form
I0 and Form II0 of the revised general line-symmetric Bricard
linkages:

h02 ¼ 2 tan�1 �Bterm02 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm022 � 4Aterm02 � Cterm02

p
2Aterm02

 !

h03 ¼ 2 tan�1 �Bterm03 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm023 � 4Aterm02 � Cterm03

p
2Aterm03

 !

h04 ¼ �h01

h05 ¼ �h02

h06 ¼ �h03

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(29)

and

Fig. 6 The SVD results of the original general line-symmetric Bricard 6R linkages: (a) Form I
linkage and (b) Form II linkage

Fig. 7 The kinematic paths of the revised Form I0 general line-symmetric Bricard linkage
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h02 ¼ 2 tan�1 �Bterm02 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm022 � 4Aterm02 � Cterm02

p
2Aterm02

 !

h03 ¼ 2 tan�1 �Bterm03 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm023 � 4Aterm02 � Cterm03

p
2Aterm03

 !

h04 ¼ �h01

h05 ¼ �h02

h06 ¼ �h03

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(30)

where

Aterm02 ¼ ðA02 sin h01 þ B02 cos h01 þ L02Þ
�ðD02 þ F02 sin h01 þ H02 cos h01Þ

Bterm02 ¼ 2ðC02 þ E02 sin h01 þ G02 cos h01Þ
Cterm02 ¼ ðA02 sin h01 þ B02 cos h01 þ L02Þ

þðD02 þ F02 sin h01 þ H02 cos h01Þ

8>>>>>>><
>>>>>>>:

(31)

A02 ¼ þða034 sin a012 cos a023 � a012 sin a034Þ
B02 ¼ þðR03 sin a012 cos a023 sin a034 þ R2 sin a012 sin a034Þ
C02 ¼ �ða023 sin a012 cos a034 � a012 sin a023Þ
D02 ¼ þðR3 sin a012 sin a023 cos a034 � R01 sin a012 sin a023Þ
E02 ¼ � R03 sin a023 sin a034

F02 ¼ þða034 cos a012 sin a023 � a023 sin a034Þ
G02 ¼ �ða023 cos a012 sin a034 � a034 sin a023Þ
H02 ¼ þ R03 cos a012 sin a023 sin a034

L02 ¼ þ R01ðcos a012 cos a023 � cos a034Þ
þ R02ðcos a023 � cos a012 cos a034Þ
þ R03ð1� cos a012 cos a023 cos a034Þ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(32)

and

Aterm03 ¼ ðA03 sin h01 þ B03 cos h01 þ L03Þ
�ðD03 þ F03 sin h01 þ H03 cos h01Þ

Bterm03 ¼ 2ðC03 þ E03 sin h01 þ G03 cos h01Þ
Cterm03 ¼ ðA03 sin h01 þ B03 cos h01 þ L03Þ

þðD03 þ F03 sin h01 þ H03 cos h01Þ

8>>>>>>><
>>>>>>>:

(33)

A03 ¼ �ða012 cos a023 sin a034 � a034 sin a012Þ

B03 ¼ þðR02 sin a012 cos a023 sin a034 þ R03 sin a012 sin a034Þ

C03 ¼ �ða023 cos a012 sin a034 � a034 sin a023Þ

D03 ¼ þ ðR02 cos a012 sin a023 sin a034 þ R01 sin a023 sin a034Þ

E03 ¼ þ R02 sin a012 sin a023

F03 ¼ �ða012 sin a023 cos a034 � a023 sin a012Þ

G03 ¼ �ða023 sin a012 cos a034 � a012 sin a023Þ

H03 ¼ þ R02 sin a012 sin a023 cos a034

L03 ¼ þ R01ðcos a012 � cos a023 cos a034Þ

þ R02ð1� cos a012 cos a023 cos a034Þ

þ R03ðcos a023 � cos a012 cos a034Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(34)

The following geometry conditions are used to plot the kine-
matic paths in Figs. 7 and 8 using Eqs. (29) and (30), respectively.
The spatial configurations of these two linkage forms are plotted
in Figs. 9 and 10, respectively. Note that the twists on links 34
and 61 in Eq. (27) differ from the twists on links 3040 and 6010 in
Eq. (35) by p. And the offsets are negatively equaled in Eq. (35c)

a012;45 ¼ 2:40; a023;56 ¼ 2:90; a034;61 ¼ 1:50 (35a)

a012;45 ¼ 4p=18; a023;56 ¼ 8p=18; a034;61 ¼ �5p=18 (35b)

R01 ¼ �R04 ¼ 0:50; R02 ¼ �R05 ¼ 0:55; R03 ¼ �R06 ¼ 0:42

(35c)

Fig. 8 The kinematic paths of the revised Form II0 general line-symmetric Bricard 6R linkage
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4 Relationship Between the Original and Revised

General Line-Symmetric Bricard Linkages

By comparing the solutions of closure equations of the original
general line-symmetric Bricard linkage in Eqs. (25) and (26) with
the revised general line-symmetric Bricard linkage’s in Eqs. (29)
and (30), it can be found that when

a12 ¼ a012 ¼ a45 ¼ a045; a23 ¼ a023 ¼ a56 ¼ a056;

a34 ¼ a034 ¼ a61 ¼ a061

a12 ¼ a012 ¼ a45 ¼ a045; a23 ¼ a023 ¼ a56 ¼ a056;

a34 ¼ a0346p ¼ a61 ¼ a0616p

R1 ¼ R01 ¼ R4 ¼ �R04; R2 ¼ R02 ¼ R5 ¼ �R05;

R3 ¼ R03 ¼ R6 ¼ �R06

(36)

we will have

h1 ¼ h01; h2 ¼ h02; h3 ¼ h03; h4 ¼ �h04; h5 ¼ �h05;

h6 ¼ �h06 (37)

for both linkage forms, which has been confirmed by the kine-
matic paths in Figs. 2, 3, 7, and 8. Even though the geometry

Fig. 9 The spatial configuration of the revised Form I0 general line-symmetric
Bricard 6R linkage when hI0

1 ¼ p=3

Fig. 10 The spatial configuration of the revised Form II0 general line-
symmetric Bricard 6R linkage when hII0

1 ¼ p=3

Fig. 11 The illustrations of the general line-symmetric Bricard
linkage: (a) the original Form I linkage and (b) the revised Form
I0 linkage
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conditions and revolute variables in the revised general line-
symmetric Bricard linkage are not line-symmetric, the spatial con-
figurations of the resultant linkages in Figs. 9 and 10 are still in a
line-symmetric manner.

In fact, with the geometric parameters in Eqs. (27) and (35)
which satisfies Eq. (36), the spatial configurations of the revised
Forms I0 and II0 linkages in Figs. 9 and 10 are the same as those of
the original Forms I and II linkages’ in Figs. 4 and 5. Take the
Form I of the original and revised general line-symmetric Bricard
linkages, for example, the joints 4, 5, 6 in Figs. 11(a) and 11(b)
are in opposite directions due to a34 ¼ a0346p ¼ a61 ¼ a0616p. As
a result, h4 ¼ �h04, h5 ¼ �h05, h6 ¼ �h06. The same analysis could
be carried out for the relationship between the Form II original
and revised linkages. The original and revised linkages are
actually equivalent to each other with different setups on joint
axis directions.

5 Conclusion and Discussions

In this paper, the kinematics of the original general line-
symmetric Bricard 6R linkage is investigated through the alge-
braic derivation of the solutions to the closure equations. It is
found that there are two independent linkage forms, which are
called the Form I linkage and Form II linkage, under the same ge-
ometry conditions. The revised general line-symmetric Bricard
linkage is also investigated with negatively equaled offsets on the
opposite joints. Further analysis shows that the original and re-
vised linkages are equivalent with different setups on the joint
axis directions. Results in this paper offer an in-depth understand-
ing about the kinematics of the general line-symmetric Bricard
linkage.

For the general line-symmetric octahedral Bricard linkage as a
special case of the general line-symmetric Bricard linkage, we can
substitute aiðiþ1Þ ¼ 0ði ¼ 1; 2;…; 6Þ into the two sets of closure
equations of the general line-symmetric Bricard linkage to give
the closure equations of the line-symmetric octahedral Bricard
linkage. As shown in Fig. 12, it is found that the closure equations
of each linkage form can only produce half of the kinematic paths
of the line-symmetric octahedral Bricard linkage, which then join
together at points PI and PII to form a full-cycle motion of the
linkage. When the revolute variables are in negative relationship,
no closure can be achieved for the line-symmetric octahedral

Bricard linkage. The results shown in Fig. 12 comply with previ-
ous results in Refs. [8,9].

It should be pointed out that since the quadratic equation is
used in the process to solve the closure equations, its discriminant
must be non-negative in order to obtain the valid solution. For
example, the discriminant of Eq. (19) must follow the condition to
ensure a valid input–output relationship between h1 and h2

Bterm2
2 � 4Aterm2 � Cterm2 � 0 (38)

and for the relationship between h1 and h3

Bterm2
3 � 4Aterm3 � Cterm3 � 0 (39)

must hold. Equations (38) and (39) contain only the input kine-
matic variable h1 and the geometric parameters of the linkage,
aiðiþ1Þ; aiðiþ1Þ; and Ri. Then the combinations of their solutions for
the range of h1 in the terms of aiðiþ1Þ; aiðiþ1Þ, and Ri offer the valid
linkage closure between input kinematic variable h1 and the out-
put kinematic variables h2;3;4;5;6, which is established in Eqs. (25)
and (26). So with the given geometric parameters of the linkage,
the valid input kinematic variable can be determined by Eqs. (38)
and (39). In general, the line-symmetric Bricard linkage in Figs. 2,
3, 7, and 8, h1 2 �p; p½ Þ, and the special line-symmetric octahe-
dral Bricard linkage in Fig. 12, the domain of the definition for h1

is �2:4816; 2:4914½ Þ.
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Nomenclature

A, B, …, H, and L ¼ the symbols of simplified mathemati-
cal relationships

aiðiþ1Þ ¼ the length of link iðiþ 1Þ, which is
the common normal distance from zi

to ziþ1 positively about xi, and
defined in the range of ð�1;þ1Þ

Aterm, Bterm, and Cterm ¼ the symbols of simplified mathemati-
cal relationships

d3�1 ¼ the 3� 1 translational vector
Forms I, II ¼ the different linkage closures

I ¼ the identity matrix
Ri ¼ the offset of joint i, which is the com-

mon normal distance from xi to xiþ1

positively along zi, and defined in the
range of ð�1;þ1Þ

R3�3 ¼ the 3� 3 rotational matrix
Tiðiþ1Þ ¼ the transformation matrix from joint i

to joint iþ 1
x and x0 ¼ the corresponding parameters in two

types of general line-symmetric Bri-
card linkage, where x is for the pa-
rameters in the original linkage and
x0 is for the parameters in the revised
linkage

xi ¼ the coordinate axis along the com-
mon normal between joint axes from
joint i to joint iþ 1

Fig. 12 The kinematic paths of the general line-symmetric
octahedral Bricard linkage. Here, the geometric parameters are
the same as Eq. (27) with aiðiþ1Þ ¼ 0. The black solid line is from
the closure equations of the Form I linkage; the grey solid line
is from those of the Form II linkage.
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zi ¼ the coordinate axis along the revolute
axis of joints i

aiðiþ1Þ ¼ the twist of link iðiþ 1Þ, which is the
rotation angle from zi to ziþ1 posi-
tively about xi, and defined in the
range of �p; p½ Þ

hi ¼ the revolute variable of joint i, which
is the rotation angle from xi to xiþ1

positively about zi, and defined in the
range of �p; p½ Þ
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