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This paper explores the feasibility of constructing mechanisms reconfigurable between 6R and
4R overconstrained linkages. Spatial triangle and Bennett linkage are used as the building
blocks to form the reconfigurable Bricard linkage. Due to the different directions of the joint
axes, the Bennett linkage can be setup in either asymmetric or line-symmetric manners.
Subsequently, two 6R linkages are constructed in asymmetric and line-symmetric configura-
tions, respectively. Their potential of reconfiguration is investigated through bifurcation
analysis. The result shows that the asymmetric one can be reconfigured between Bennett
linkage and general line-symmetric Bricard linkage through bifurcation points, while the
line-symmetric one only functions as a Bennett linkage with two additional fixed joints.
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1. Introduction

There are two major linkage families among the various single-loop overconstrained spatial linkages: the Bennett-based one
[1] and the Bricard-related one. In the former one, the Bennett linkage [2,3] is used as the basic construct unit to form different
overconstrained 5R and 6R linkages, such as Myard linkages [4], extended Myard linkage [5], Goldberg's 5R and 6R linkages [6],
Waldron's hybrid 6R linkages [7], Yu and Baker's syncopated 6R linkage [8], generalised Goldberg 5R linkage and Wohlhart's
double-Goldberg 6R linkage [9], mixed double-Goldberg 6R linkages [10] and so on. Linkages in the Bricard-related family usually
contain certain symmetric geometry properties to enable mobility [11,12], including three octahedral cases [13], three linkage
cases [14], Altmann's 6R linkage [15], Wohlhart's hybrid 6R linkage [16] and so on. However, there is little interaction between
the linkages in Bennett-based linkage family and those in Bricard-related one, except for the isomerization introduced by
Wohlhart [17], which sets up the connection between theWohlhart's double-Goldberg 6R linkage and the line-symmetric Bricard
linkage.

Recent development in mechanism and machine design promotes the concept of reconfigurable mechanism, which has
emerged into three major categories. The first is based on the re-assembly of identical or similar robotics modules [18–20], each
of which is an integrated system of microprocessors, batteries, sensors, end-effectors, etc. The second is the metamorphic
mechanism [21–23], which can generate different topologies for reconfigurations. The third is to incorporate certain bifurcation
behaviours to the existing linkage's kinematic paths [24–26]. At the transit configurations, kinematotropy mechanism [25,27] can
change its global mobility. The mechanism reported by Kong and Huang [24] can change between two operation modes. And the
multifunctional 7R mechanism can function as two different types of overconstrained linkages [26]. A comprehensive review
about the current development, principles and strategies of the reconfigurable mechanisms was discussed in [28]. The potential of
reconfiguration can be identified when two or more subgroups are involved in the construct of the mechanism [29]. The
ll rights reserved.
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Section 0, i.e. 0. Notation

Fig. 0. The setup of the Denavit and Hartenberg's parameters.

zi The coordinate axis along the revolute axis of joints i;
xi The coordinate axis along the common normal between joint axes zi − 1 and zi;
ai(i + 1) The length of link i(i + 1), which is the common normal distance from zi to zi + 1 positively about xi + 1, and

defined in the range of (−∞, +∞);
ai(i + 1) The twist of link i(i + 1), which is the rotation angle from zi to zi + 1 positively about xi + 1, and defined in the

range of [−π, π);
Ri The offset of joint i, which is the common normal distance from xi to xi + 1 positively along zi, and defined in the

range of (−∞, +∞);
θi The revolute variable of joint i, which is the rotation angle from xi to xi + 1 positively about zi, and defined in the

range of [−π, π);
Ti(i + 1) The transformation matrix from joint i to joint i + 1;

Τi iþ1ð Þ ¼
cos θi − cos αi iþ1ð Þ sin θi sin αi iþ1ð Þ sin θi ai iþ1ð Þ cos θi
sin θi cos αi iþ1ð Þ cos θi − sin αi iþ1ð Þ cos θi ai iþ1ð Þ sin θi
0 sin αi iþ1ð Þ cos αi iþ1ð Þ Ri
0 0 0 1

2
664

3
775;

Aterm, Bterm, Cterm, A, B, C Simplified mathematical symbols;
A2,3, B2,3, C2,3, D2,3, E2,3, F2,3, G2,3, H2,3, L2,3 Simplified mathematical symbols;
i Denotes joint sequence in the resultant asymmetric Bricard linkage in Section 3;
i′ Denotes joint sequence in the resultant line-symmetric Bricard linkage in Section 4;
ST, AB, LB Superscripts that denote parameters in the spatial triangle (ST), Bennett linkage in asymmetric setup (AB) and

Bennett linkage in line-symmetric setup (LB); and
BI,II Bifurcation points on the kinematic paths.
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bifurcation behaviour of the double-subtractive-Goldberg 6R linkage was analysed in [30], where multiple linkage closures were
found using both construct method and non-construct method. As the result, this Goldberg 6R linkage could be reconfigured
among four different 6R linkages, whose kinematic curves form a closed loop through four bifurcation points. Recently, the
Wohlhart's double-Goldberg 6R linkage was analysed and the operation form of a 4R linkage is successfully introduced to the
linkage's bifurcation paths [31]. Here, the effort is made to construct reconfigurable mechanism under the third category.

In this paper, two spatial triangles and Bennett linkages are used as the basic elements to construct the 6R linkages with
different reconfiguration capabilities. In Section 2, the kinematics of the spatial triangle, the Bennett linkage and the general
line-symmetric Bricard linkage are introduced. Sections 3 and 4 demonstrate the construct process of an asymmetric 6R linkage
and a line-symmetric 6R linkage, as well as analyse their kinematic bifurcation for reconfiguration. Final conclusions are drawn in
Section 5.
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2. Preliminaries

2.1. The spatial triangle structure

The spatial triangle is a single-loop structure enclosed by three spatial links and connected by three revolute joints. It was
initially introduced and analysed by Yang [32] using dual quaternion method. Later, Mavroidis and Roth [33] studied the
kinematics of the spatial polygons using matrix method and extended the research into screw polygons. And screw triangles were
applied to unify the finite and infinitesimal kinematics [34]. The importance of spatial triangle was recently revisited by Huang
[35]. In Fig. 1, a spatial triangle is defined with DH parameters [36].

With the geometry conditions of links 12 and 23 in the spatial triangle, i.e. a12, α12, a23, α23, R2 and θ2, using the closure matrix
condition that
the ge

and
T12T23T31 ¼ I; ð1Þ

ometric parameters on link 31 can be derived as

a31 ¼ a23 cos α12 sin θ1 sin θ2− cos θ1 cos θ2ð Þ−a12 cos θ1−R2 sin α12 sin θ1;

tanα31 ¼ − sin α12 sin θ2
sin θ1 cos θ2 þ cos α12 sin θ2 cos θ1

;

R1 ¼ a12 cos α31 sin θ1 sin θ3− cos θ1 cos θ3ð Þ−a23−a31 cos θ3
sin α31 sin θ3

;

R3 ¼ a31 cos α23 sin θ2 sin θ3− cos θ2 cos θ3ð Þ−a12−a23 cos θ2
sin α31 sin θ3

;

tan θ1 ¼ − sin α23 sin θ2
sin α12 cos α23 þ cos α12 sin α23 cos θ2

;

tan θ3 ¼ − sin α12 sin θ2
sin α23 cos α12 þ cos α23 sin α12 cos θ2

:

ð2Þ
2.2. The Bennett linkage with two different setups

The original setup of the Bennett linkage [2,3] is shown in Fig. 2(a). Its geometry conditions and closure equations are
a12 ¼ a34;α12 ¼ α34; a23 ¼ a41;α23 ¼ α41;Ri ¼ 0 i ¼ 1; 2; 3 and 4ð Þ; ð3aÞ

sin α12

a12
¼ sin α23

a23
; ð3bÞ

θ1 þ θ3 ¼ 0; ð4aÞ

θ2 þ θ4 ¼ 0; ð4bÞ

tan
θ1
2

tan
θ2
2

¼
sin

α23 þ α12

2
sin

α23−α12

2

; ð4cÞ

tively.
respec
The proportional relationship of the sine of twist over link length is called the Bennett ratio, as shown in Eq. (3b). The geometry

conditions in Eqs. (3a) and (3b) are typically in a line-symmetric form. But the closure equations in Eqs. (4a) and (4b) do not
follow the line-symmetric condition. This is because the revolute axes of the Bennett linkage in Fig. 2(a) are not set up in a
1

2

3

3

2

1

R1

R2

R3

a12 / 12 a23 / 23

a31 / 31

Fig. 1. A spatial triangle defined with DH parameters.
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Fig. 2. The two different joint-axis setups of Bennett linkage: (a) in the asymmetric setup; (b) in the line-symmetric setup.
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line-symmetric manner. As shown in Fig. 2(b), by reversing the axes of joints 3 and 4, the resultant linkage becomes a Bennett
linkage in a line-symmetric setup [37,38]. The corresponding geometry conditions and closure equations are
and

respec
a12 ¼ a34;α12 ¼ α34; a23 ¼ a41;α23 ¼ α41;Ri ¼ 0 i ¼ 1; 2; 3 and 4ð Þ; ð5aÞ

sin α12

a12
¼ − sin α23

a23
; ð5bÞ

θ1 ¼ θ3; θ2 ¼ θ4; tan
θ1
2

tan
θ2
2

¼
cos

α23 þ α12

2
cos

α23−α12

2

; ð6Þ

tively.
2.3. The general line-symmetric Bricard linkage

The geometry conditions of the general line-symmetric Bricard linkage [14,39] are
a12 ¼ a45; a23 ¼ a56; a34 ¼ a61;

α12 ¼ α45; α23 ¼ α56; α34 ¼ α61;

R1 ¼ R4; R2 ¼ R5; R3 ¼ R6:

ð7Þ
The explicit closure equations of the linkage have been derived in [40] and two closures of general line-symmetric Bricard
linkage forms are found with the identical geometry conditions, whose explicit closure equations are
θ2 ¼ 2 tan−1 −Bterm2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2−4Aterm2 � Cterm2

q

2Aterm2

0
@

1
A

θ3 ¼ 2 tan−1 −Bterm3−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

3−4Aterm3 � Cterm3

q

2Aterm3

0
@

1
A:

θ4 ¼ θ1
θ5 ¼ θ2
θ6 ¼ θ3

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ

image of Fig.�2
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And
respec
θ2 ¼ 2 tan−1 −Bterm2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2−4Aterm2 � Cterm2

q

2Aterm2

0
@

1
A

θ3 ¼ 2 tan−1 −Bterm3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

3−4Aterm3 � Cterm3

q

2Aterm3

0
@

1
A

θ4 ¼ θ1
θ5 ¼ θ2
θ6 ¼ θ3

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

tively. All symbols are defined as follows.

Aterm2 ¼ A2 sin θ1 þ B2 cos θ1 þ L2ð Þ− D2 þ F2 sin θ1 þ H2 cos θ1ð Þ
Bterm2 ¼ 2 C2 þ E2 sin θ1 þ G2 cos θ1ð Þ
Cterm2 ¼ A2 sin θ1 þ B2 cos θ1 þ L2ð Þ þ D2 þ F2 sin θ1 þ H2 cos θ1ð Þ;

8<
: ð10Þ

Aterm3 ¼ A3 sin θ1 þ B3 cos θ1 þ L3ð Þ− D3 þ F3 sin θ1 þ H3 cos θ1ð Þ
Bterm3 ¼ 2 C3 þ E3 sin θ1 þ G3 cos θ1ð Þ
Cterm3 ¼ A3 sin θ1 þ B3 cos θ1 þ L3ð Þ þ D3 þ F3 sin θ1 þ H3 cos θ1ð Þ;

8<
: ð11Þ

A2 ¼ þ a34 sin α12 cos α23 þ a12 sin α34ð Þ
B2 ¼ − R3 sin α12 cos α23 sin α34 þ R2 sin α12 sin α34ð Þ
C2 ¼ þ a23 sin α12 cos α34 þ a12 sin α23ð Þ
D2 ¼ − R3 sin α12 sin α23 cos α34 þ R1 sin α12 sin α23ð Þ
E2 ¼ þR3 sin α23 sin α34
F2 ¼ þ a34 cos α12 sin α23 þ a23 sin α34ð Þ
G2 ¼ þ a23 cos α12 sin α34 þ a34 sin α23ð Þ
H2 ¼ −R3 cos α12 sin α23 sin α34
L2 ¼ þR1 cos α12 cos α23 þ cos α34ð Þ þ R2 cos α23 þ cos α12 cos α34ð Þ

þ R3 1þ cos α12 cos α23 cos α34ð Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð12Þ

A3 ¼ þ a12 cos α23 sin α34 þ a34 sin α12ð Þ
B3 ¼ − R2 sin α12 cos α23 sin α34 þ R3 sin α12 sin α34ð Þ
C3 ¼ þ a23 cos α12 sin α34 þ a34 sin α23ð Þ
D3 ¼ − R2 cos α12 sin α23 sin α34 þ R1 sin α23 sin α34ð Þ
E3 ¼ þR2 sin α12 sin α23
F3 ¼ þ a12 sin α23 cos α34 þ a23 sin α12ð Þ
G3 ¼ þ a23 sin α12 cos α34 þ a12 sin α23ð Þ
H3 ¼ −R2 sin α12 sin α23 cos α34
L3 ¼ þR1 cos α12 þ cos α23 cos α34ð Þ þ R2 1þ cos α12 cos α23 cos α34ð Þ

þ R3 cos α23 þ cos α12 cos α34ð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð13Þ
3. The asymmetric 6R linkage

Two identical spatial triangles 123 and 456 are prepared for construction in Fig. 3, whose geometry conditions are set up as
follows.
aST45 ¼ aST12; αST
45 ¼ αST

12; RST
4 ¼ RST

1 ; θST4 ¼ θST1 ;

aST56 ¼ aST23; αST
56 ¼ αST

23; RST
5 ¼ RST

2 ; θST5 ¼ θST2 ;

aST64 ¼ aST31; αST
64 ¼ αST

31; RST
6 ¼ RST

3 ; θST6 ¼ θST3 :

ð14Þ
Take spatial triangle 123 for example, the geometry conditions on links 12 and 23, i.e. a12ST, α12
ST, a23ST, α23

ST, θ2ST and R2
ST are

pre-defined design parameters. The rest of the parameters related to link 31 can be derived with Eq. (2).
Bennett linkage 1346 in asymmetric joint-axis setup, as the original Bennett linkage, is used as an intermediate bridge to

connect these two spatial triangles. Bennett linkage 1346 and spatial triangle 123 share the common link 31 for merging. Note
that the joint axes on the links to be merged should be kept along the same directions. This is the same for merging Bennett
linkage 1346 and spatial triangle 456 on link 46. Therefore, the geometry conditions of the Bennett linkage 1346 in asymmetric
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setup are
aAB31 ¼ aAB64 ¼ aST31 ¼ aST64
� �

; aAB34 ¼ aAB61 ;

αAB
31 ¼ αAB

64 ¼ αST
31 ¼ αST

64

� �
; αAB

34 ¼ αAB
61 ;

sin αAB
31

aAB31
¼ sin αAB

34

aAB34
;RAB

i ¼ 0 i ¼ 1; 3; 4 and 6ð Þ:
ð15Þ
In Fig. 4, after removing the common links and joints marked in dash lines, the rest form a single-loop overconstrained 6R
linkage. Its geometry conditions are directly related to those of the spatial triangle and Bennett linkage as
a12 ¼ a45 ¼ aST12; a23 ¼ a56 ¼ aST23; a34 ¼ a61 ¼ aAB34 ; ð16aÞ

α12 ¼ α45 ¼ αST
12; α23 ¼ α56 ¼ αST

23; α34 ¼ α61 ¼ αAB
34 ; ð16bÞ

sin α34

α34
¼ sin αST

31

αST
31

; ð16cÞ

R1 ¼ R4 ¼ RST
1 ; R2 ¼ R5 ¼ RST

2 ; R3 ¼ R6 ¼ RST
3 : ð16dÞ
Thus, this 6R linkage belongs to the general line-symmetric Bricard linkage with θ2,5 fixed at θ2ST.
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Fig. 4. The first reconfigurable asymmetric 6R linkage.
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The explicit closure equations of this 6R linkage could be derived by analysing the detailed relationship among θi, θiST and θiAB.
For example, the construct process of joint 3 in Fig. 5 determines
θ3 ¼ θST3 þ θAB3 þ π: ð17Þ
As a result, the compatibility conditions for the asymmetric 6R linkage are
θ1 ¼ θST1 þ θAB1 −π; θ2 ¼ θST2 ; θ3 ¼ θST3 þ θAB3 þ π;
θ4 ¼ θST1 −θAB1 −π; θ5 ¼ θST2 ; θ6 ¼ θST3 −θAB3 −π:

ð18Þ
By substituting the closure equations of the spatial triangle in Eq. (2) and that of the asymmetric Bennett linkage in Eqs. (4a)–(4c)
into Eq. (18), we can derive the explicit closure equations of this linkage as follows.
θ1 þ θ4 ¼ 2θST1 ; θ2 ¼ θ5 ¼ θST2 ; θ3 þ θ6 ¼ 2θST3 ;

θ3 ¼ θST3 −2 tan−1
sin

α34 þ αST
31

2

sin
α34−αST

31

2

� tan θ1−θST1
2

0
BB@

1
CCAþ π;

ð19Þ

θ1,3ST and α31
ST are determined in Eq. (2) with pre-defined design parameters α12,23

ST , a12,23ST and θ2ST. The kinematic paths are
where
plotted in Fig. 6 using Eq. (19). Note that θ2,5 is constrained to a fixed design parameter of θ2ST during the full circle movement,
which corresponds to the pre-defined configurations of joints 2 and 5 in the spatial triangles. Although the geometry conditions
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Fig. 6. The kinematic paths of the asymmetric 6R linkage.
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of the 6R linkage are line-symmetric in Eqs. (16a)–(16d), the resultant linkage is still kinematically asymmetric with θ1 ≠ θ4,
θ2 = θ5 and θ3 ≠ θ6 in Eq. (19), which is an inherited property from the Bennett linkage in asymmetric setup.

The linkage's singular values are plotted in Fig. 7 using the Singular Value Decomposition method [41,42], in which the fifth
singular value falls to zero at BI and BII, indicating possible bifurcation behaviours. At point BI, it is found that the linkage could
bifurcate into an operation form with six active revolute joints, with line-symmetric property, see Fig. 8. The line of symmetry is
shown as the central line in front view and the dashed dot in top view.

By using the SVD method, this linkage's kinematic paths are shown in Fig. 9 and the singular values in Fig. 10. It is found that
the kinematic paths are in correspondence to the closure equations in Eq. (8), which indicates that this linkage is a Form I general
line-symmetric Bricard linkage. To differentiate the linkages, we name the linkage in Fig. 4 as the Bennett linkage form, and the
1 2 34 5
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0

2

2

1218 9
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361218 9
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361218 9
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36 36 36

Fig. 9. The kinematic paths of the Form I of the asymmetric 6R linkage. Note that the figures are plotted in the region that θ1 ∈ [π / 36, 5π / 36].
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linkage in Fig. 8 as the Form I linkage. In Fig. 10, the fifth singular value falls to zero at BI, which is in accordance to the SVD results
in Fig. 7. The location of θBI

1 can be determined analytically in Eq. (20) by substituting the pre-defined revolute parameter θ2ST on
joint 2 in the Bennett linkage form into the closure equations of the Form I general line-symmetric Bricard linkage in Eq. (8). The
solution to Eq. (20) is derived in Appendix A.
tan
θST2
2

¼
−Bterm2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2−4Aterm2 � Cterm2

q

2Aterm2
ð20Þ
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Fig. 12. The kinematic paths of the Form II of the asymmetric 6R linkage.
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configuration between the Bennett linkage form and the Form II linkage; (i)–(k) are the motion sequence of the Form II linkage.
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On the other hand, the Bennett linkage form could bifurcate at BII in Fig. 7 into another operation form with six active revolute
joints, see Fig. 11, whose kinematic paths are plotted in Fig. 12 and SVD results in Fig. 13. This linkage's kinematic paths are in
correspondence to the closure equations of the Form II general line-symmetric Bricard linkage in Eq. (9) and therefore named as
the Form II linkage. From the SVD results in Fig. 13, the fifth singular value falls to zero at BII, which is in accordance to the SVD
results in Fig. 7. The position of θBII

1 can be analytically determined in Eq. (21) by substituting the pre-defined revolute parameter
θ2ST on joint 2 in the Bennett linkage form into the closure equations of the Form II general line-symmetric Bricard linkage in
Eq. (9), whose solution is also included in the Appendix A.
tan
θST2
2

¼
−Bterm2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2−4Aterm2 � Cterm2

q

2Aterm2
ð21Þ
The full map of bifurcation for the constructed 6R linkage is plotted in Fig. 14. The Bennett linkage form can bifurcate into the
Form I or Form II linkages on different bifurcation points, but the Form I and II linkages cannot bifurcate into each other directly.
Therefore, we successfully introduce the operation form of a Bennett linkage with only 4 active revolute joints to bridge the two
forms of the general line-symmetric Bricard linkage. The use of Bennett linkage in asymmetric joint-axis setup disrupts the
line-symmetric relationship among the kinematic variables and enables the reconfiguration capability.

4. The line-symmetric 6R linkage

As illustrated in Fig. 15, two identical spatial triangles are the same as those in Fig. 3, and the intermediate bridge is a Bennett
linkage in line-symmetric joint-axis setup, whose geometry conditions are
aLB3′1′ ¼ aLB6′4′ ¼ aAB31 ; aLB3′4′ ¼ aLB6′1′ ¼ aAB34 ;
αLB
3′1′ ¼ αLB

6′4′ ¼ αAB
31 ; αLB

3′4′ ¼ αLB
6′1′ ¼ αAB

34 � π;
sin αLB

3′1′

aLB3′1′
¼ − sin αLB

3′4′

aLB3′4′
; RLB

i ¼ 0 i ¼ 1′; 3′; 4′ and 6′ð Þ:
ð22Þ
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Fig. 16. The line-symmetric 6R linkage.
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In Fig. 16, after removing the common links and joints in dash lines, the rest form the second 6R linkage. Its geometry
conditions are
which
forego

θ

where
condit
using
shows
Bricar
linkag
is diff
line-sy
genera
is show
second
a1′2′ ¼ a4′5′ ¼ aST1′2′; a2′3′ ¼ a5′6′ ¼ aST2′3′; a3′4′ ¼ a6′1′ ¼ aLB3′4′; ð23aÞ

α1′2′ ¼ α4′5′ ¼ αST
1′2′; α2′3′ ¼ α5′6′ ¼ αST

2′3′; α3′4′ ¼ α6′1′ ¼ αLB
3′4′ ð23bÞ

sin α3′4′

a3′4′
¼ − sin αST

3′1′

aST3′1′
; ð23cÞ

R1′ ¼ R4′ ¼ RST
1′ ; R2′ ¼ R5′ ¼ RST

2′ ; R3′ ¼ R6′ ¼ RST
3′ : ð23dÞ

also belong to the general line-symmetric Bricard linkage with θ2′,5′ fixed at θ2′ST. Following the same procedure as the
ing section, the closure equations of this 6R linkage are derived as follows,

θ1′ ¼ θ4′ ; θ2′ ¼ θ5′ ¼ θST2′ ;

3′ ¼ θ6′ ¼ θST3′ −2 tan−1
cos

α3′4′ þ αST
3′1′

2

cos
α3′4′−αST

3′1′

2

� tan θ1′−θST1′
2

0
BB@

1
CCAþ π;

ð24Þ

θ1′,3′ST and α3′,1′
ST are determined in Eq. (2) with pre-defined design parameters α1′2′,2′3′

ST , a1′2′,2′3′ST and θ2′ST. Both the geometric
ions and the kinematic variables of the second 6R linkage are in line symmetry. Its kinematic paths are plotted in Fig. 17
Eq. (24), in which θ2′,5′ are constrained to the design parameter of θ2′ST during the full circle movement. Further investigation
that the kinematic paths in Fig. 17 are in correspondence to the closure equations of the Form II general line-symmetric

d linkage in Eq. (9). Therefore, this Bennett form in Fig. 16 is actually the Form II of the general line-symmetric Bricard
e with two fixed joints. Its singular values are plotted using SVDmethod in Fig. 18. There is no singular configuration, which
erent from the 6R linkage in asymmetric setup. The use of Bennett linkage in line-symmetric setup preserved the
mmetric relationship among the kinematic variables. Thus, the resultant linkage shares the same kinematic property as the
l line-symmetric Bricard linkage, which is not reconfigurable [40]. The kinematic paths of the corresponding Form I linkage
n in Fig. 19 using Eq. (8), which confirms that there is no common configuration between the Forms I and II linkages of the
6R linkage we just constructed.
5. Conclusion

In this paper, the feasibility of reconfiguration between the general line-symmetric Bricard linkage and the Bennett linkage is
explored base on their symmetry property. By using spatial triangles and Bennett linkages in different symmetry joint-axis setups
as the building blocks, two 6R linkages have been constructed.
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The first 6R linkage is achieved by connecting two identical spatial triangles with a Bennett linkage in asymmetric joint-axis
setup, and then removing the redundant links inside to form a closed-loop overconstrained spatial linkage. The kinematic
singularity analysis reveals that this linkage is actually in a Bennett linkage form and reconfigurable to the Forms I and II
line-symmetric Bricard linkage through bifurcation points. Therefore, it is a reconfigurable linkage.

By replacing the Bennett linkage in asymmetric joint-axis setup with a Bennett linkage in line-symmetric setup in the
construction, the second 6R linkage has been formed. The second linkage shares the same kinematic properties with the general
line-symmetric Bricard linkage and it is not reconfigurable between the two linkage forms. The constructed 6R linkage is a special
case of the Form II line-symmetric Bricard linkage with two fixed joints. A summary of these two linkages is listed in Table 1.

Here, the construct method for the proposed reconfigurable Bricard linkage has been developed. For a given line-symmetric
Bricard linkage, either reverse-construct method or SVD method can be applied to testify whether it could be reconfigured into a
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Fig. 19. The kinematic paths of corresponding Form I linkage of the line-symmetric 6R linkage.
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Table 1
Summary of the two constructed 6R linkages.

The first reconfigurable asymmetric 6R linkage The second line-symmetric 6R linkage

Construct units Two identical spatial triangles
&
One Bennett linkage in asymmetric joint-axis setup

Two identical spatial triangles
&
One Bennett linkage in line-symmetric joint-axis setup

Resultant linkage forms Bennett linkage form
Form I of the general line-symmetric Bricard linkage
Form II of the general line-symmetric Bricard linkage

Form II of the general line-symmetric Bricard linkage with two fixed joints

Reconfiguration potential Reconfigurable through bifurcation points Not reconfigurable as the resultant linkage forms are still independent
and distinct to each other
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Bennett linkage. This work not only explores the design method for a reconfigurable mechanism between 4R and 6R
overconstrained linkages, but also sets up a connection between the Bennett linkage and the line-symmetric Bricard linkage.
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Appendix A. The solutions to Eqs. (20) and (21)

The solutions to Eqs. (20) and (21) are derived from the following equations:
where
tan
θST2
2

¼
−Bterm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bterm2

2−4Aterm2 � Cterm2

q

2Aterm2
: ð25Þ
The above equation could be rewritten into the following form,
Aterm2 � tan2 θ
ST
2

2
þ Bterm2 � tan

θST2
2

þ Cterm2 ¼ 0; ð26Þ

Aterm2, Bterm2 and Cterm2 are functions of θ1 in Eqs. (10) and (12). By substituting Eqs. (10) and (12) into Eq. (26), we will
where
get the following equation about θBI=II

1 ,
A � sin θ
BI=II

1 þ B � cos θBI=II

1 þ C ¼ 0; ð27Þ

A ¼ A2−F2ð Þ tan2 θ
ST
2

2
þ 2E2 tan

θST2
2

þ A2−F2ð Þ

B ¼ B2−H2ð Þ tan2 θ
ST
2

2
þ 2G2 tan

θST2
2

þ B2−H2ð Þ

C ¼ L2−D2ð Þ tan2 θ
ST
2

2
þ 2C2 tan

θST2
2

þ L2−D2ð Þ:

8>>>>>><
>>>>>>:

ð28Þ
After half-tangent transformation of the sinθBI=II

1 and cosθBI=II

1 in Eq. (28), we can derive that
C−Bð Þ � tan2 θ
BI=II

1

2
þ 2A � tan θ

BI=II

1

2
þ C þ Bð Þ ¼ 0: ð29Þ
By solving Eq. (29), we can derive that
tan
θ
BI=II

1
2

¼ −A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2−C2

p

C−B
: ð30Þ
Therefore, the positive result of Eq. (30) is the solution to Eq. (20), while the negative result of Eq. (30) is the solution to
Eq. (21). The symbols are determined in Eqs. (12) and (28).
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