
Multiple linkage forms and bifurcation behaviours of the
double-subtractive-Goldberg 6R linkage

C.Y. Song, Y. Chen⁎
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 50 Nanyang Avenue, 639798, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2012
Received in revised form 11 July 2012
Accepted 11 July 2012
Available online 17 August 2012

In this paper, a particular type of double-subtractive-Goldberg 6R linkage is obtained by
combining two subtractive Goldberg 5R linkages on the commonly shared ‘roof-links’ through
the common link-pair method and common Bennett-linkage method. Two distinct linkage
forms are obtained with the identical geometry conditions, yet different closure equations.
Bifurcation behaviours of these two forms are analysed, leading to the discovery of two more
linkage forms of this linkage, which cannot be constructed with Bennett linkages or Goldberg
linkages directly. From the construction process, this 6R linkage belongs to the Bennett-based
linkages. But about the bifurcation behaviours, it is closely related to the line-symmetric Bricard
linkage because of its hidden symmetric property. Therefore, it could play an important role in
exploring the relationship between the Bennett-based linkages and the Bricard linkages.
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1. Introduction

The overconstrained linkage is a kind of mechanism that preserves mobility during a full-circle movement while not
complying with the Grübler–Kutzbach's mobility criterion. There are a number of spatial overconstrained linkages with only
revolute joints. Among them, the most famous one is the Bennett linkage [1,2], an overconstrained four-bar linkage with skew
angle of twists. With proper arrangement and construction method, certain number of Bennett linkages can be combined
together to build different types of single-loop overconstrained 5R and 6R linkages, called the Bennett-based linkages [3],
including Goldberg's 5R and 6R linkages [4], Myard's 5R and 6R linkages [5], extended Myard linkage [6], one of the special
Waldron's hybrid 6R linkages [7], Yu and Baker's syncopated 6R linkage [8], Wohlhart's double-Goldberg 6R linkage [9],
back-to-back double-Goldberg 6R linkage [10], subtractive Goldberg 5R linkage , a special double-subtractive-Goldberg 6R linkage
[11] and a family of mixed double-Goldberg 6R linkages [12]. All of them have one degree of freedom generally.

Another important 3D overconstrained linkage is the Bricard linkage [13,14], consisting of six distinct cases: the line-
symmetric octahedral case, the plane-symmetric octahedral case, the doubly collapsible octahedral case, the line-symmetric case,
the plane-symmetric case and the trihedral case. Baker [15] pointed out that the line-symmetric octahedral case is just a special
case of the general line-symmetric case. Wohlhart [16] proposed a linkage with a shared transversal and partial symmetry. Recent
works of Fowler and Guest [17,18] shows that symmetry does increase the mobility of the mechanism. The line or plane
symmetry makes the Bricard linkages mobile. Any additional symmetric property can increase the mobility of the linkage
infinitely or finitely. For example, Chen, You and Tarnai [19] proposed a three-fold-symmetric Bricard linkage with a bifurcation
point when six links are collinear. Chen and Chai [20] studied a special type of Bricard linkage with both line and plane symmetry.
In the investigation of its bifurcation behaviour, a complicated bifurcation loop among the line and plane symmetric Bricard
linkage, plane symmetric Bricard linkage and spherical 4R linkage has been formed. Chai and Chen [21] found two closure forms,
the linkage form and the structure form, in a special line-symmetric octahedral Bricard linkage.

Meanwhile, new reconfigurable mechanism has been proposed with multiple functions. The kinematotropic linkage by
Wohlhart [22] can switch its global mobility at transit points. Dai and Rees [23] proposed the metamorphic mechanisms with
variable topology and mobility. Kong and Huang [24] proposed a number of one degree-of-freedom overconstrained linkages
with two operation modes by using the type synthesis method. Wohlhart [25] proposed a series of multifunctional 7R linkages by
inserting an overconstrained mobile chain into a 7R linkage.

In this paper, a particular type of double-subtractive-Goldberg 6R linkage is introduced and multiple linkage forms are found,
which shows great potential in application of reconfigurable mechanisms. The paper is presented as follows. Section 2 introduces
the subtractive Goldberg 5R linkage. In Section 3, two linkage forms of the double-subtractive-Goldberg 6R linkage are built
through different construction methods. Section 4 analyses their bifurcation behaviour, leading to two more linkage forms.
Conclusion and discussions are drawn in Section 5.

2. The subtractive goldberg 5R linkage

As shown in Fig. 1, two Bennett linkages share a common link marked in grey. Using Goldberg's method [4], these two linkages
are then inversely posed and superposed on the common link. After removing the common parts in dash lines, a subtractive
Goldberg 5R linkage is constructed [11].

The geometry conditions of the linkage are

a12 ¼ a34; a23 ¼ a45−a51;
α12 ¼ α34; α23 ¼ α45−α51;

sin α45

a45
¼ sin α51

a51
¼ sin α12

a12
;

Ri ¼ 0 i ¼ 1; 2;…; 5ð Þ:

ð1Þ

zi coordinate axis along the revolute axis of joint i;
xi coordinate axis along the common normal from zi to zi+1;
ai(i+1) length of link i(i+1), which is the common normal distance from zi to zi+1 positively about xi+1;
αi(i+1) twist of link i(i+1), which is the rotation angle from zi to zi+1 positively about xi+1;
Ri offset of joint i, which is the common normal distance from xi to xi+1 positively along zi;
θi revolute variable of joint i, which is the rotation angle from xi to xi+1 positively about zi;
a/α, b/β, c/γ, d/δ the length and twist of the link, e.g. a/α is a link with length a and twist α;
m1,2,…,5, PI,II, Q, A1,2,3,4, B1,2,3,4, S11,12,21,22 symbols for the simplified mathematical relationships;
A1, A2, A3, A4, B1, B2, B3, B4 different configurations of the 5R linkages A and B;
Forms I, II, III and IV different linkage forms of the double-subtractive-Goldberg 6R linkages;
BI,II, B'I,II bifurcation points on the kinematic paths.
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Its closure equations are

tan
θ2
2

¼
tan

θ1
2

sin
α12 þ α51

2
sin

α12−α51

2

; ð2aÞ

tan
θ3
2

¼
sin

α12 þ α45

2

tan
θ1
2

sin
α12−α45

2

; ð2bÞ

θ4 ¼ −θ1; ð2cÞ

tan
θ5
2

¼

tan2 θ1
2
þ

sin
α12 þ α45

2
sin

α12−α45

2

⋅
sin

α12 þ α51

2
sin

α12−α51

2

sin
α12 þ α45

2
sin

α12−α45

2

−
sin

α12 þ α51

2
sin

α12−α51

2

0
B@

1
CA tan

θ1
2

: ð2dÞ

Rewriting Eq. (2d) gives

tan2 θ1
2
−

sin
α12 þ α45

2
sin

α12−α45

2

−
sin

α12 þ α51

2
sin

α12−α51

2

0
B@

1
CA tan

θ5
2

tan
θ1
2
þ

sin
α12 þ α45

2
sin

α12−α45

2
⋅
sin

α12 þ α51

2
sin

α12−α51

2

¼ 0: ð2eÞ

So θ1 in term of θ5 can be presented as

tan
θ1
2

¼ 1
2

sin
α12 þ α45

2
sin

α12−α45

2

−
sin

α12 þ α51

2
sin

α12−α51

2

0
B@

1
CA tan

θ5
2

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

α12 þ α45

2
sin

α12−α45

2

−
sin

α12 þ α51

2
sin

α12−α51

2

0
B@

1
CA

2

tan2 θ5
2
−4

sin
α12 þ α45

2
sin

α12−α45

2

:
sin

α12 þ α51

2
sin

α12−α51

2

vuuuut :

ð2fÞ

From Eq. (2f), it is obvious that there are two θ1s corresponding to one θ5, whereas θ1 is one-to-one related to θ2,3,4, as shown
in Eqs. (2a)–(2c). This property leads to a special characteristic of the double-subtractive-Goldberg 6R linkage constructed by two
such 5R linkages, which shall be investigated next.

3. The double-subtractive-Goldberg 6R linkage

Two construction methods have been used in generating the complete set of mixed double-Goldberg 6R linkages [12]. The
common link-pair (CLP) method, which was firstly proposed byWohlhart [9] when building his double-Goldberg 6R linkage, is to
achieve a single-loop overconstrained 6R linkage by merging two 5R linkages on the commonly shared link-pairs and then
removing this connection. And the common Bennett-linkage (CBL) method, which was proposed by Song and Chen [11], is to
connect the commonly shared link-pairs consecutively to build a common Bennett linkage as the connection. After removing the
connection, the rest part will also form a single-loop overconstrained 6R linkage.

In order to get the double-subtractive-Goldberg 6R linkage by connecting two subtractive Goldberg 5R linkages on the
“roof-links” through two construction methods, both subtractive Goldberg 5R linkages, namely linkages A and B, are required to

1

23

4
5

Fig. 1. Construction of the subtractive Goldberg 5R linkage.
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share the same geometry conditions on link-pair 45–51 set as a/α~c/γ. Thus, the two sets of geometry conditions of linkages A
and B are

aA12 ¼ aA34 ¼ b; aA23 ¼ a−c; aA45 ¼ a; aA51 ¼ c;

αA
12 ¼ αA

34 ¼ β; αA
23 ¼ α−γ; αA

45 ¼ α; αA
51 ¼ γ;

aB12 ¼ aB34 ¼ d; aB23 ¼ a−c; aB45 ¼ a; aB51 ¼ c;

αB
12 ¼ αB

34 ¼ δ; αB
23 ¼ α−γ; αB

45 ¼ ααB
51 ¼ γ;

and
sinα
a

¼ sinβ
b

¼ sinγ
c

¼ sinδ
d

;

RA
i ¼ RB

i ¼ 0 i ¼ 1; 2;…; 5ð Þ:

ð3Þ

Meanwhile, under the CLP method, these two subtractive Goldberg 5R linkages must have the same configuration on link-pair
45–51, i.e. θ5A=θ5B. And under the CBL method, the configurations of link-pair 45–51 in both linkages must meet the requirement
of the Bennett linkage, i.e. θ5A+θ5B=0 or θ5A+θ5B=2π. In another words, for the linkage B with configuration θ5B=ψ, only the

Fig. 2. The kinematic paths of linkage A, configurations A1 and A3 when θ5A=ψ and configurations A2 and A4 when θ5A=−ψ .
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linkage A with configuration θ5A=ψ can be used to form a 6R linkage through CLP method. And for the same linkage B, only the
linkage A with configuration θ5A=−ψ can be used to form a 6R linkage through CBL method.

Due to the quadratic property between θ1A and θ5A on the kinematic path of linkage A in Fig. 2, there are two configurations of
linkage A, A1 and A3, when θ5A=ψ. Similarly, there are another two configurations of linkage A, A2 and A4, when θ5A=−ψ. These
four configurations are shown in Fig. 3, in which link-pair 45–51 is marked in grey colour, with θ5A1=θ5A3=ψ, and θ5A2=θ5A4=−ψ.
Considering Eq. (2f), we have

tan
θA1;A31
2

¼ 1
2

sin
β þ α
2

sin
β−α
2

−
sin

β þ γ
2

sin
β−γ
2

0
B@

1
CA tan

ψ
2

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

β þ α
2

sin
β−α
2

−
sin

β þ γ
2

sin
β−γ
2

0
B@

1
CA

2

tan2 ψ
2
−4

sin
β þ α
2

sin
β−α
2

⋅
sin

β þ γ
2

sin
β−γ
2

vuuuuut ;

ð4aÞ

and

tan
θA2;A41

2
¼ −1

2

sin
β þ α
2

sin
β−α
2

−
sin

β þ γ
2

sin
β−γ
2

0
B@

1
CA tan

ψ
2

∓ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

β þ α
2

sin
β−α
2

−
sin

β þ γ
2

sin
β−γ
2

0
B@

1
CA

2

tan2 ψ
2
−4

sin
β þ α
2

sin
β−α
2

⋅
sin

β þ γ
2

sin
β−γ
2

vuuuuut :

ð4bÞ

Thus θ1A1=−θ1A4 and θ1A2=−θ1A3. And from the closure equations of the 5R linkage in Eqs. (2a)–(2d) and Eqs. (4a) and (4b), it
is shown that θiA1=−θiA4 and θiA2=−θiA3 (i=1, 2,…, 5). Therefore, linkages A1 and A4 are in the same configuration, but their
axes are in opposite directions. So are linkages A2 and A3.

As a result, the linkage B with configuration θ5B=ψ can be combined with linkages A1 and A3 through CLP method, and it can
be combined with linkages A2 and A4 through CBL method. Similarly, for linkage B there are also two configurations, namely B1
and B3, when θ5B=ψ and another two configurations, namely B2 and B4, when θ5B=−ψ, given in Fig. 4.

Fig. 3. The spatial configurations of A1, A2, A3 and A4, in which A1 and A3 are at θ5A=ψ and A2 and A4 are at θ5A=−ψ.
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Therefore, between one of the four linkage As and one of the four linkage Bs, only one construction method, CLP or CBL, can be
applied to form a 6R linkage. Altogether, there will be 16 (=4×4) possible connections, among which only two distinct forms,
Forms I and II linkages, are obtained as listed in Table 1. The third row will be taken as an example to explain the construction
process in the following sections.

3.1. The Form I of the double-subtractive-Goldberg 6R linkage

Through the CLP method, linkages A1 and B3 are merged on the commonly shared link-pair 45–51 to form a single-loop
overconstrained 6R linkage, named as Form I linkage, see Fig. 5. From Eq. (3), the geometry conditions of the 6R linkage are

a12 ¼ a45 ¼ a−c; a23 ¼ a61 ¼ d; a34 ¼ a56 ¼ b;
α12 ¼ α45 ¼ α−γ; α23 ¼ α61 ¼ δ; α34 ¼ α56 ¼ β;
sinα
a

¼ sinβ
b

¼ sinγ
c

¼ sinδ
d

;

Ri ¼ 0 i ¼ 1; 2;…;6ð Þ:

ð5Þ

From the construction process, the closure equations of the Form I linkage can be derived as Eqs. (6a), (6b), (6c) and (6d). The
kinematic paths of the linkage are plotted in Fig. 6.

tan
θ2
2

¼ m3

m4 tan
θ1
2

; θ3 ¼ π þ 2 tan−1PI−2 tan−1 m4 tan
θ1
2

� �
;

tan
θ4
2

¼ −m1

PI
; tan

θ5
2

¼ − PI

m2
; θ6 ¼ π−2 tan−1PI þ 2 tan−1 m4 tan

θ1
2

� �
;

ð6aÞ

Fig. 4. The spatial configurations of B1, B2, B3 and B4, in which B1 and B3 are at θ5B=ψ and B2 and B4 are at θ5B=−ψ.

Table 1
Sixteen possible connections between linkage As and linkage Bs.

Linkage A1
θ5A=ψ

Linkage A2
θ5A=−ψ

Linkage A3
θ5A=ψ

Linkage A4
θ5A=−ψ

Linkage B1
θ5B=ψ

CLP-Form II CBL-Form II CLP-Form I CBL-Form I

Linkage B2
θ5B=−ψ

CBL-Form II CLP-Form II CBL-Form I CLP-Form I

Linkage B3
θ5B=ψ

CLP-Form I CBL-Form I CLP-Form II CBL-Form II

Linkage B4
θ5B=−ψ

CBL-Form I CLP-Form I CBL-Form II CLP-Form II
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where

PI ¼

1
2

m2−m1ð ÞQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−m1ð Þ2Q2−4m1m2

q� �
θ1∈ −π; 0½ Þ

1
2

m2−m1ð ÞQ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−m1ð Þ2Q2−4m1m2

q� �
θ1∈ 0; π½ Þ

;

8>>><
>>>:

ð6bÞ

Q ¼
m3 þm4 tan

2 θ1
2

m4−m3ð Þ tan θ1
2

: ð6cÞ

Fig. 6. The kinematic paths of the Form I linkage.

Fig. 5. The construction of the Form I linkage through CLP method.
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and

m1 ¼
sin

β þ α
2

sin
β−α
2

; m2 ¼
sin

β þ γ
2

sin
β−γ
2

; m3 ¼
sin

δþ α
2

sin
δ−α
2

;

m4 ¼
sin

δþ γ
2

sin
δ−γ
2

; m5 ¼
sin

δþ β
2

sin
δ−β
2

:

ð6dÞ

Alternatively, the same linkage can be obtained when linkages A2 and B3 are combined through CBL method, as shown in
Fig. 7. Following a similar derivation process, the same closure equations as Eqs. (6a), (6b), (6c) and (6d) can be obtained.

Fig. 7. The construction of the Form I linkage through CBL method.

Fig. 8. The construction of the Form II linkage through CLP method.
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3.2. The Form II of the double-subtractive-Goldberg 6R linkage

As shown in Fig. 8, linkages A3 and B3 are merged on link-pair 45–51 through CLP method to form a single-loop overconstrained
6R linkage. Obviously, the geometry conditions of this linkage are the same as those of the Form I linkage in Eq. (5). From the
construction process, the closure equations of this linkage can be derived as Eq. (7) and the kinematic paths of the linkage are plotted
in Fig. 9, which are different from those of the Form I linkage's. So we name this linkage as Form II linkage.

tan
θ2
2

¼ m3

m4 tan
θ1
2

; θ3 ¼ π þ 2 tan−1PII−2 tan−1 m4 tan
θ1
2

� �
;

tan
θ4
2

¼ −m1

PII
; tan

θ5
2

¼ − PII

m2
; θ6 ¼ π−2 tan−1PII þ 2 tan−1 m4 tan

θ1
2

� �
;

ð7Þ

where

PII ¼
1
2

m2−m1ð ÞQ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−m1ð Þ2Q2−4m1m2

q� �
θ1∈ −π; 0½ Þ

1
2

m2−m1ð ÞQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−m1ð Þ2Q2−4m1m2

q� �
θ1∈ 0; π½ Þ

;

8>><
>>:

and Q, and mi are given in Eqs. (6c) and (6d).
Alternatively, the same linkage can be obtained with linkages A4 and B3 through CBL method, see Fig. 10. The same closure

equations can be derived as Eq. (7).
After a throughout analysis of all sixteen possible constructions in Table 1, it is concluded that only Forms I and II linkages can

be formed. They are the linkage forms with the identical geometry conditions but different kinematic paths. And there is no
intersection between these two sets of kinematic paths, i.e., there is no common configuration. So they cannot transform into each
other directly. These two linkage forms are in different and independent mobile closures.

4. Bifurcation analysis of the double-subtractive-Goldberg 6R linkage

It is worth noting that for both linkage forms, there exists such configuration on the kinematic paths, see Figs. 6 and 9, that all
θi (i=1, 2,…, 6) reach 0 or ±π simultaneously, which corresponds to the configuration that all six links are collinear. It is
necessary to investigate such configurations for singularity. Recently, Müller [26,27] systematically investigated the generic
mobility of rigid body mechanisms and its configuration space in regular and singular points. In this paper, the singular value
decomposition (SVD) method of Jacobian matrix [28–30] is applied. The sixth singular value is always zero, which confirms that

Fig. 9. The kinematic paths of the Form II linkage.
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the linkage has one degree of freedom during full-circle movement. At the collinear configurations, the fifth singular value falls to
zero, which indicates that the instantaneous mobility is increased at these points.

The SVD results of the Forms I and II linkages are shown in Fig. 11. It is obvious that at the positions when θ1=0 and θ1=±π,
the fifth singular value falls to zero. Thus, they are the bifurcation points. As there is no intersection between the kinematic paths
of the Forms I and II linkages, it is expected that there are new possible kinematic paths between these bifurcation points.

4.1. The Form III of the double-subtractive-Goldberg 6R linkage

Through the SVD analysis, it is found that at the point θ1I =0 in Fig. 11(a), the Form I linkage can bifurcate into a different
linkage form, namely the Form III linkage, as shown in Fig. 12. The Form II linkage can also bifurcate into the same linkage form at
the point θ1II=±π in Fig. 11(b).

The Form III linkage cannot be built from the combination of two subtractive Goldberg 5R linkages as Forms I and II linkages.
By using the transformation matrix [31], the closure equations as Eqs. (9a) and (9b) are obtained analytically and the kinematic
paths are shown in Fig. 13.

θ2 ¼ π þ 2 tan−1S22−2 tan−1 m5

S11
; tan

θ3
2

¼ tan
θ6
2

¼ S11;

θ4 ¼ π þ θ1 þ 2 tan−1 m5

S11
; tan

θ5
2

¼ S22:
ð8aÞ

(a) (b)

Fig. 11. The SVD results of (a) the Form I linkage and (b) the Form II linkage.

Fig. 10. The construction of the Form II linkage through CBL method.
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where

S11 ¼
− B1 þ D1 cos θ1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 þ D1 cos θ1ð Þ2− A2

1−C2
1

� �
sin2θ1

q
A1−C1ð Þ sin θ1

S22 ¼
− B2 þ D2 cos θ1ð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ D2 cos θ1ð Þ2− A2

2−C2
2

� �
sin2θ1

q
A2−C2ð Þ sin θ1

;

8>>>>>><
>>>>>>:

ð8bÞ

A1 ¼ a34 sin α12 þ a12 sin α34 cos α23
B1 ¼ a34 sin α23 þ a23 sin α34 cos α12
C1 ¼ a23 sin α12 þ a12 sin α23 cos α34
D1 ¼ a12 sin α23 þ a23 sin α12 cos α34

;

A2 ¼ a12 sin α34 þ a34 sin α12 cos α23
B2 ¼ a12 sin α23 þ a23 sin α12 cos α34
C2 ¼ a23 sin α34 þ a34 sin α23 cos α12
D2 ¼ a34 sin α23 þ a23 sin α34 cos α12

;

8>><
>>:

8>><
>>:

ð8cÞ

and m5 is given in Eq. (6d).
The relationship between θ1 and θ5 of Forms I, II and III linkages is shown in Fig. 14. BI is the bifurcation point between Forms I

and III linkages, and BII is the bifurcation point between Forms II and III linkages.

Fig. 13. The kinematic paths of the Form III linkage.

Fig. 12. The spatial layout of the Form III linkage.
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4.2. The Form IV of the double-subtractive-Goldberg 6R linkage

Furthermore, at the point θ1I =±π in Fig. 11(a), the Form I linkage can bifurcate into another linkage form, namely the Form IV
linkage, as shown in Fig. 15. The Form II linkage can also bifurcate into the Form IV linkage at the point θ1II=0 in Fig. 11(b).

Similar to the Form III linkage, the Form IV linkage also has no construction basis. By using the transformation matrix, the
closure equations can be derived as Eqs. (9a) and (9b) and the kinematic paths are plotted in Fig. 16.

θ2 ¼ π þ 2 tan−1S21−2 tan−1 m5

S12
; tan

θ3
2

¼ tan
θ6
2

¼ S12;

θ4 ¼ π þ θ1 þ 2 tan−1 m5

S12
; tan

θ5
2

¼ S21;
ð9aÞ

where

S12 ¼
− B1 þ D1 cos θ1ð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 þ D1 cos θ1ð Þ2− A2

1−C2
1

� �
sin2θ1

q
A1−C1ð Þ sin θ1

;

S21 ¼
− B2 þ D2 cos θ1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ D2 cos θ1ð Þ2− A2

2−C2
2

� �
sin2θ1

q
A2−C2ð Þ sin θ1

:

8>>>>><
>>>>>:

ð9bÞ

Note that Ai, Bi, Ci, Di (i=1, 2) and m5 are given in Eqs. (8c) and (6d).
The relationship between θ1 and θ5 of Forms I, II and IV linkages is shown in Fig. 17. B′I is the bifurcation point between Forms I

and IV linkages, and B′II is the bifurcation point between Forms II and IV linkages.

Fig. 15. The spatial layout of the Form IV linkage.

Fig. 14. The kinematic paths of Forms I, II and III linkages. The black solid lines are for Form I linkage, the grey solid lines are for Form II linkage and the black dash
lines are for Form III linkage.
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Careful examination shows that the Forms III and IV linkages are actually the same linkage in different numbering sequences
of joints. As shown in Fig. 18, after changing the numbering sequence in squares into that in circles, the representation of the
geometry conditions of the linkage remains the same. In another words, the relationship between revolute variables of the Forms
III and IV linkages are

θIII1 ¼ θIV2 ; θIII2 ¼ θIV1 ; θIII3 ¼ θIV6 ;

θIII4 ¼ θIV5 ; θIII5 ¼ θIV4 ; θIII6 ¼ θIV3 :
ð10Þ

In summary, among the kinematic paths of all four forms of the double-subtractive-Goldberg 6R linkage, there are four
different bifurcation points. The relationship between θ1 and θ5 is used to demonstrate the transformation among Forms I, II, III
and IV linkages, as shown in Fig. 19.

Fig. 17. The kinematic paths of Forms I, II and IV linkages. The black solid lines are for Form I linkage, the grey solid lines are for Form II linkage and the grey dash
lines are for Form IV linkage.

Fig. 16. The kinematic paths of the Form IV linkage.
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Fig. 18. The geometric conditions of the double-subtractive-Goldberg 6R linkage. The numbering sequence in squares correspond to the Form III linkage and the
numbering sequence in circles correspond to the Form IV linkage.

(a)

(b)

(c)

(d)

(e)(f)(g)

(h)

(i)

(j)

(k)

(l)

(m)
(n)

(o)

(p)

Fig. 19. Transformation among four forms of the double-subtractive-Goldberg linkage. The black and grey solid lines are for Form I and Form II linkages, and the
black and grey dash lines are for Form III and Form IV linkages. (a)–(c) are the motion sequence of the Form I linkage; (d) is the bifurcation configuration BI

between Forms I and III linkages; (e)–(g) are the motion sequence of Form III linkage; (h) is the bifurcation configuration BII between Forms III and II linkages;
(i)–(k) are the motion sequence of the Form II linkage; (l) is the bifurcation configuration B′II between Forms II and IV linkages; (m)–(o) are the motion sequence
of Form IV linkage; and (p) is the bifurcation configuration B′I between Forms I and IV linkages.
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5. Conclusion and discussions

In this paper, due to the quadratic property of the revolute variable on the roof links of the subtractive Goldberg 5R linkage,
two different and independent mobile closures of the double-subtractive-Goldberg 6R linkage, Forms I and II linkages, have been
obtained by combining two subtractive Goldberg 5R linkages through common link-pair and common Bennett-linkage methods.
Bifurcation analysis has been performed, leading to another two linkage forms, Forms III and IV linkages, which cannot be formed
from the construction of Bennett-based linkages directly. Further investigation has revealed that the Forms III and IV linkages are
actually the same linkage form in different numbering sequences. The kinematic paths of these four double-subtractive-Goldberg
6R linkage forms are connected through four bifurcation points to form a kinematic loop.

The bifurcation behaviour shown in this double-subtractive-Goldberg 6R linkage is not unique. If the building blocks are
replaced by two original Goldberg 5R linkages, Wohlhart's double-Goldberg 6R linkage can be formed, in which the same
bifurcation behaviour exists [32]. On the other hand, this double-Goldberg 6R linkage can be changed into a special case of the
line-symmetric Bricard 6R linkage by using Wohlhart's isomerization method [33], as demonstrated in Fig. 20. The original
link-pair 56–61 is replaced by a new link-pair 56′–6′1. The original and new link-pairs form a Bennett linkage. Thus, the geometry
conditions of the special line-symmetric Bricard 6R linkage without offset are as follows.

a12 ¼ a45 ¼ a−c; a23 ¼ a560 ¼ d; a34 ¼ a601 ¼ b;
α12 ¼ α45 ¼ α−γ; α23 ¼ α560 ¼ δ; α34 ¼ α601 ¼ β;
sin α
a

¼ sin β
b

¼ sin γ
c

¼ sin δ
d

;

Ri ¼ 0 i ¼ 1; 2;…; 6ð Þ:

ð11Þ

It should be expected that such a special Bricard linkage without offset also has four different forms, which can be transformed
among each other through bifurcation points. The work on the general line-symmetric Bricard linkage will be addressed in an
upcoming paper with more elaborations.

The double-subtractive-Goldberg 6R linkage presented in this paper belongs to the Bennett-based linkage in the viewpoint of
construction. It is also closely related to the line-symmetric Bricard linkage in the viewpoint of bifurcation behaviour. Therefore,
the linkage will play an important role in exploring the relationship between the Bennett-based linkages and the Bricard linkages.
And the linkage's complicated bifurcation behaviour could be used for the design of reconfigurable mechanisms.
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