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Abstract
We present SeeThruFinger, a soft robotic finger with an in-finger vision for multi-modal percep-

tion, including visual perception and tactile sensing, for geometrically adaptive and real-time reactive
grasping. Multi-modal perception of intrinsic and extrinsic interactions is critical in building intelligent
robots that learn. Instead of adding various sensors for different modalities, a preferred solution is to
integrate them into one elegant and coherent design, which is a challenging task. This study leverages
the Soft Polyhedral Network design as a robotic finger, capable of omni-directional adaptation with
an unobstructed view of the finger’s spatial deformation from the inside. By embedding a miniature
camera underneath, we achieve the visual perception of the external environment by inpainting the fin-
ger mask using E2FGV, which can be used for object detection in the downstream tasks for grasping.
After contacting the objects, we use real-time object segmentation algorithms, such as XMem, to track
the soft finger’s spatial deformations. We also learn a Supervised Variational Autoencoder to enable
tactile sensing of 6D forces and torques for reactive grasp. As a result, we achieve multi-modal percep-
tion, including visual perception and tactile sensing, and soft, adaptive object grasping within a single
vision-based soft finger design compatible with multi-fingered robotic grippers.
Keywords: In-finger Vision, Visual Perception, Tactile Learning, Segment Anything, Inpainting

1. Introduction

Visual perception plays a central role in
robotics to transform the unstructured environ-
ment into a structured embodiment for reasoning
and learning in an object-centric manner.1 While
the classical method looks into the visual features
from imaging to extract reusable information ana-
lytically,2 recent development exploits data-driven
methods by systematically integrating promptable
segmentation tasks, pre-trained foundation mod-
els, and web-scale datasets to segment anything.3

Such capability provides researchers with further
insights to achieve object tracking,4 object classi-
fication,5 pose estimation,6 occlusion inpainting,7

and scene reconstruction8 with pixel-level details
in an automatic workflow, paving the path for
a physical embodiment of machine intelligence
through robot learning.9 While it is preferable
to introduce more modalities, vision-based per-

ception remains a leading choice for many robot
learning research and applications. However, due
to the basic principles in optical physics, problems
such as occlusion remain challenging in applica-
tions.

Vision-based sensory perception is probably
the most widely adopted modality in modern
robotics.10–12 Besides bioinspiration from the hu-
man’s hand-eye system,13 robotic vision provides
a unified representation of the 3D world into ma-
trices of 2D pixels that have evolved rapidly in
both theoretical foundations and engineering ap-
plications, which is further accelerated by recent
advancements in data science and machine learn-
ing.14 Occlusion is a practical problem caused by
optical physics, such as line-of-sight, lighting, and
reflection, which is inevitable for robot worksta-
tions that mainly adopted cameras as the only or
primary sensor for extrinsic perception. To per-
form iterative visual verification during manipula-
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tion,15 researchers usually need to add more cam-
eras16 or move the gripper to a particular pose to
expose the fingers for grasp result checking, suf-
fering trade-offs in hardware, integration, or time
cost. While it is always possible to add more sen-
sors or use more powerful ones, it remains a chal-
lenge to integrate multiple sensory modalities into
a single unit for robotic manipulation.17

The robot manipulation problem is typically
set up as a hand-eye system with a gripper
(“hand”) for handling physical contact with the
objects and an external camera (“eye”) for vi-
sual perception of the object-centric environment,
with other components such as the manipulator,
a desk-top, and target objects implied in a work-
station.18 Introducing tactile sensing on top of
visual perception dramatically enhances flexibil-
ity in learning manipulation skills, formulating a
coarse-to-fine hierarchy between globalized scene
understanding and localized manipulation dynam-
ics.19 While researchers from other fields have
developed various tactile sensors utilizing differ-
ent sensing principles,20 vision-based solutions
show significant interest from robotic researchers
in academia and applications,21, 22 probably due
to a unified data structure, algorithmic process-
ing, and electronic convenience from the vision
sensors with compatible theories and principals in
robotic vision and deep learning.

The visual occlusion problem is not unique
to robots but also commonly faced by humans.
Tactile sensory from the skin, especially those
on the fingertips, is a biological answer to this
problem with evolutionary evidence.23 As the
most favorable modality among roboticists, the
research community is interested in developing
vision-based tactile sensors to complement visual
perception through contact.24 However, due to
the size of the camera board, the field of view,
lenses, and wiring, it remains a design problem for
vision-based tactile sensors to be seamlessly com-
patible with the various multi-fingered gripper de-
signs. In-finger vision represents a general ar-
chitecture of vision-based tactile sensing, usually
designed with a piece of soft material handling
physical interactions with the external environ-
ment through touch, then transforming the contact
physics into material deformation, and finally cap-
tured by a miniature camera hidden underneath.

In this way, unstructured contact physics is trans-
formed into pixel-wise features in a dense reso-
lution. Researchers have explored various design
techniques, such as enclosed lighting in multiple
colors,25 artificial markers on the inside surface26

or inside the soft material27 and transparent ma-
terial,28 to enhance the imaging qualities before
leveraging recent advancement of computer vi-
sion in algorithm, data, and computation.

[Figure 1 about here.]

There remains a research gap in design in
the current literature to leverage the soft mate-
rial adaptation in handling physical contact for en-
hanced manipulation while generating a rich im-
age stream of the material deformations of the
object-centric environment and contact physics si-
multaneously. We propose the SeeThruFinger ar-
chitecture shown in Figure 1 to address this limita-
tion, which features an in-finger vision for multi-
modal perception in manipulation learning, ca-
pable of geometric adaptation, visual perception,
and tactile sensing in a single design.

• Soft Finger: The soft finger adopts a vari-
ant of the Soft Polyhedral Network de-
signs.29 A miniature camera is embedded
underneath to capture the whole-body de-
formation of the soft finger from the in-
side. One can easily redesign the adap-
tor to fix the soft finger to most industrial
multi-fingered grippers with added mechan-
ical benefits in geometric adaptation, size
of grasping, and impact absorption at a low
cost.

• Scene Inpainting: Before contact occurs,
assuming no collision with any object, the
finger covers a fixed area of pixels as a mask
on the image, occluding the scene. We can
use threshold segmentation against a simple
background. We verified the effectiveness
of using inpainted images for downstream
tasks such as object detection and manipu-
lation planning.

• Tactile Sensing: As contact begins, we can
use the same finger mask obtained earlier
and implement algorithms for real-time ob-
ject segmentation, such as XMem,4 to track
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the soft finger’s spatial deformation and use
it to train a Supervised Autoencoder against
true labels obtained from an ATI nano25.
Finally, we achieved real-time tactile sens-
ing that can be used for reactive grasping to
adjust the gripper pose for enhanced grasp-
ing.

2. Problem formulation

Motivated by the fact that the in-finger cam-
era sees both the deformation of the soft network
structure and the world outside, we learn a fu-
sion of visual perception and tactile sensing via a
single in-finger vision, making every pixel it sees
contribute to one of the two perception modali-
ties. We have a mask template M0 depicting the
area blocked by the finger’s network without ex-
ternal load. When the soft finger interacts with
objects in robotic tasks such as bin picking, the
in-finger camera captures an image It ∈ R360×640

at each timestep t. We track the time evolution of
the mask Mt. The goal is to learn a visual percep-
tion model f({It −Mt}t∈[t1,t2]) to understand the
scene of workspace and a tactile perception model
FTt = g(Mt,M0) to infer instantaneous force
and torque exerted on the center of soft finger
base, where FTt = [fx, fy, fz, τx, τy, τz]t. This
implies the 2D mask contains adequate informa-
tion on the 3D soft deformation, which further de-
termines the resultant force and torque at the base
of the soft finger.

3. Methods

3.1. Design Integration of the SeeThruFinger

This study adopts the DeepClaw worksta-
tion18 built with aluminum extrusion, housing a
UR10e from Universal Robots on a pedestal and
a tabletop in front covered by fabrics in black
color. As shown in Figure 2(a), although a cam-
era is fixed on the post, it is unplugged as we
will implement visual perception for the scene
through inpainting using in-finger vision from the
SeeThruFinger. Figure 2(b) shows a detailed view
of the two-fingered gripper (Model AG-160-95
by DH-Robotics) with its fingertips replaced by
the SeeThruFingers. Each SeeThruFinger con-
tains a soft, omni-adaptive finger designed based

on a variant of the Soft Polyhedral Networks,29

mounted on a camera housing 3D-printed by
UV-curable transparent resin (Somos WaterShed
XC 1112), where a miniature camera (Chengyue
WX605 from Weixinshijie) is fixed inside, as
shown in Figure 2(c). One can customize the base
plate to install the SeeThruFinger on FT sensors
for testing or on a gripper as fingertips for soft
and adaptive grasping. Compared to our previous
work,29 the SeeThruFinge features an enhanced
design with a larger contact surface for grasping,
enabled by the two vertices on top and no marker
inside the finger. Figure 2(d) shows the objects
used for testing in this study.

[Figure 2 about here.]

3.2. The SeeThruFinger Architecture with Robot
Learning

This study proposes the SeeThruFinger ar-
chitecture for learning visual perception and tac-
tile sensing simultaneously via the in-finger vi-
sion with a soft touch, as shown in Figure 1.
Besides omni-directional adaptation for grasping,
the SeeThruFinger also features an in-finger vi-
sion with direct line-of-sight to the external envi-
ronment but suffers from occlusions by the finger
network. By segmenting the finger mask either
through simple thresholding or with clickable in-
teraction with SAM,3 we implement the inpaint-
ing algorithm, i.e., E2FGV,30 to generate the oc-
cluded scene and objects for visual perception.
Then, we performed object detection using the in-
painted image, i.e., Real-Time Detection Trans-
former (RT-DETR),31 generating object class and
its planar coordinates (x, y) on the tabletop for
manipulation planning. During its first attempt,
the gripper will attempt to pick up the object at
a fixed pose and depth z0 relative to the robot.
While closing the fingers, the same SeeThruFin-
ger detects if it has contact with the object by in-
ferring tactile feedback in 6D forces and torques
based on the finger’s whole-body deformation.
Usually, contact normal to the finger surface will
cause the finger to deform adaptively for enhanced
grasping results.32 Due to the network design,
the finger can deform twistedly to generate torque
about the z axis. When τz is detected to be larger
than 0.05 Nm, the object orientation is severely
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different from the gripper’s initial pose, suggest-
ing a less ideal grasping that can be optimized
through regrasping by turning the wrist joint re-
versely to reduce τz for an enhanced adaptation
and grasping robustness. We implemented a Su-
pervised Variational Autoencoder (SVAE) to en-
able tactile sensing using SeeThruFinger’s design
by tracking the finger’s whole-body deformation
after contact.

3.3. Supverised Variational Autoencoder for
Tactile Sensing

Previous work shows that it is possible to use
Convolutional Neural Networks for tracking soft
finger interactions,29 which suffer from a less ac-
curate prediction in 6D forces and torques. Fur-
thermore, it requires a uniform background or
enclosed lighting, a similar problem shared by
many other vision-based tactile sensors.26 Adding
an ArUco marker inside the finger is a working
solution but would introduce extra rigid plates
and designs that inevitably limit its soft adap-
tation capabilities. In this study, we leverage
the latest development in video object segmenta-
tion, i.e., XMem,4 to track the soft finger’s spa-
tial deformations in real time, even if the back-
ground is noisy. As shown in Figure 1, using
the tracked deformation as the input, we collected
true labels of 6D forces and torques at the finger
base using nano25 by ATI and trained an SVAE
model to learn the latent representation of the soft
finger’s geometric adaptation as well as the 6D
forces and torques simultaneously. As shown in
Figure 2(e), the real-time mask of the soft fin-
ger Mt and the initial template M0 are stacked
and go through the ResNet18 encoder and de-
coder module to reconstruct the original image.
At the same time, we design an auxiliary super-
vised task of force and torque regression from the
learned latent geometry representation. The over-
all loss consists of reconstruction loss, the MSE
loss of force/torque prediction, and the Kulback-
Leibler divergence. All codes are available at
https://github.com/ancorasir/SeeThruFinger.

4. Experiments and Results
The following experiments demonstrate our

proposed approach combining visual detection

and tactile control in a table cleaning task. As
shown in Figure 3(a), although both SeeThruFin-
gers on the gripper are functional, we only used
the one whose viewing range partially covers the
table at every frame throughout the following ex-
periments.

[Figure 3 about here.]

4.1. In-Finger Scene Inpainting and Object
Detection with Static Occlusion

As shown in Figure 3(b), we designed a head-
up movement of the gripper for the in-finger cam-
era to capture a short video of about 1 second in
which its viewing range sweeps across the table-
top. The first row of Figure 3(c) shows the in-
finger vision of the scene without attaching the
soft finger. The second row with the soft finger
occluding the scene, and the third for the corre-
sponding frames of the inpainted scene. Only the
right half of the image with objects is inpainted for
efficient processing. Notice that the mask stays
the same, and the environment outside changes.

For inpainting, we first obtain the mask tem-
plate M0 in Figure 3(d) using threshold segmen-
tation against a clean background. Results show
that the soft finger occludes about 53.6% of the
image pixels. Alternatively, we can use SAM to
obtain the mask by clicking for comparison in an
actual scene. Figure 3(e) shows the inpainting
operation implemented with E2FGV30 using raw
image stream from in-finger vision and the finger
mask from threshold segmentation, generating the
scene with objects on the tabletop. The inpainted
images managed to reconstruct sufficient details
of the occluded objects and the scene, as shown in
the dashed white boxes in Figure 3(c). We tested
the feasibility of the inpainted scene by perform-
ing object detection using RT-DETR31 based on
the inpainted scene, producing object classifica-
tion (%) and bounding box center (x, y) for ma-
nipulation planning. Figure 3(f) is an example
of the object detection performance, which is ac-
ceptable for simple grasping. Although it would
be interesting to test with other more advanced
pose estimation algorithms, we intentionally used
a simpler algorithm that generates only the cen-
ter of the bounding box to test reactive grasping
with soft adaptation32 and tactile sensing33 using

https://github.com/ancorasir/SeeThruFinger
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the SeeThruFinger.
The proposed SeeThruFinger effectively re-

duces a hand-eye system’s hardware complex-
ity using a single in-finger camera to achieve vi-
sual and tactile perception, which usually requires
two separate sensors with added hardware cost
and complexity in system integration in previous
work. Compared to existing solutions of vision-
based tactile sensing, our design does not require
an enclosed chamber for in-finger perception. It
retains a reasonable partial view of the scene,
making it possible for scene inpainting. Even
with GelSight type of vision-based tactile sen-
sors where transparent elastomers are used, the
view is still blocked by the external coating on
the surface26 or suffers from a blurry image of the
scene that can only be detected at a very close
range,28 insufficient for visual perception of the
whole table-top.

4.2. In-Finger Tactile Sensing with SVAE by
Tracking Soft Deformations using XMem

The SeeThruFinger is capable of spatial adap-
tation against different object geometries (Fig-
ure 4(a)). As contact begins in Figure 4(b), the
in-finger vision captures the finger’s whole-body
deformations for tactile sensing. However, when
installed on the gripper, due to the changing back-
ground visible through gaps between the network
structure, it is challenging to segment the soft net-
work efficiently when deforming simultaneously.
To address this challenge, as shown in Figure 4(c),
we implemented real-time (30 Hz) object tracking
of the soft finger using XMem4 while deforming
based on the same finger mask obtained earlier.
We evaluated this mask segmentation over a test
dataset of 1,000 samples with the ground truth
masks. The region (J) and boundary (F ) mea-
sures34 are 0.975 and 0.997, respectively, show-
ing excellent reliability in tracking the soft finger’s
spatial deformations.

[Figure 4 about here.]

Based on the segmented images of the soft fin-
ger during deformation, we implement a vision-
based tactile learning algorithm using SVAE. We
collected the training data using the setup in Fig-
ure 4(e). The in-finger camera and FT sensor were

connected to a laptop for data streaming. We col-
lected 40,000 synchronized pairs of image and FT
readings by compressing the two soft fingers from
various directions and contact locations. These
two fingers are later integrated into a two-finger
gripper and execute the table-cleaning task. We
used an 8:2 train-valid split and trained the SVAE
model for 50 epochs. To avoid excessive good val-
idation scores due to the potential sample depen-
dence in the train and validation dataset, we sepa-
rately collected a test dataset of 1,000 samples.

The average time for a singer inference is 1.9
ms on an NVidia 3080 Ti Laptop GPU. The Mean
Absolute Errors of the validation and test dataset
are reported in Table 1, indicating good general-
ization of the learned model. Figure 4(f) compares
the prediction and ground truth time in series in
the test dataset. Figure 4(g) shows the scatter plot
of such comparison in the validation dataset with
excellent R2 scores over 0.985 in all components
except fz. The relatively weak perforce in fz is
due to the limited adaptability along the z-axis.
We also evaluate the resultant force in the xy plane
and find the mean magnitude and orientation error
is 0.286 N and 2.6 degrees, respectively.

[Table 1 about here.]

The integrated design is another benefit of the
SeeThruFinger as a vision-based soft robotic fin-
ger instead of a standalone sensor. The proposed
SeeThruFinger features a 3D metamaterial design
as a soft networked structure,29 capable of omni-
directional adaption as an integrated finger with
added benefits such as geometric adaptation. By
changing the adaptors, one can directly enjoy the
compounded benefits of soft adaptation, scene in-
painting, and tactile sensing in another gripper.

4.3. Reactive Grasp Learning using
SeeThruFinger with In-Finger Vision

Here, we combine the above results into a
SeeThruFinger architecture. Figure 5(a) shows
the recorded history of 6D FT sensing using the
SeeThruFinger for reactive grasping, where the
six peaks in fx indicate grasping of the six test
objects. The inpainted scene using SeeThruFin-
ger is shown in Figure 5(b), where the inpainted
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area managed to reconstruct the objects’ over-
all details. It should be noted that the recon-
struction of the occluded geometry is well recon-
structed. However, most surface textures are gen-
erated blurry but are still recognizable and suf-
ficiently accurate to reflect their actual textures.
Figure 5(c) shows object detection results using
RT-DETR based on the inpainted scene, showing
bounding boxes for each detected object.

[Figure 5 about here.]

The most interesting result is the regrasping of
the Bosche electrical screwdriver shown in Fig-
ure 5(d). By inspecting the detailed FT history,
we identified two regrasping attempts performed
by the SeeThruFinger based on tactile sensing and
adaptive grasping. As shown in Figure 5(e), when
the SeeThruFinge performed the first grasping at-
tempt in (i), the finger immediately detected the τz
to be greater than 0.05 Nm in the negative direc-
tion. Then, (ii) the first reactive grasping begins
rotating the gripper about the z axis to reduce τz.
During the process, (iii) the screwdriver is turned
to another side suddenly and temporarily loses
contact with the finger, as both fx and fy dropped
to 0 suddenly. Even so, (iv) the gripper keeps clos-
ing, attempting to detect contact with the screw-
driver again to keep increasing τz for an enhanced
grasping pose. Next, (v) the SeeTruFinger man-
aged to detect contact with the screwdriver again,
marking the starting point of the second reactive
grasping attempt. Interestingly, SeeThruFinger
repeated the same procedure by performing the
second reactive grasping (vi) by rotating the grip-
per about the z axis until the detected τz is re-
duced towards 0. As a result, (vii) the screwdriver
is secured between the fingers and moved toward
the drop box. Finally, (viii) the SeeThruFinger
dropped the screwdriver with zero values detected
from tactile sensing using in-finger vision.

5. Conclusion and Limitations
This paper presents a design and learning ap-

proach for the SeeThruFinger architecture that si-
multaneously achieves soft and adaptive grasp-
ing, visual perception via scene inpainting, and
reactive grasping via tactile sensing using a sin-
gle in-finger vision sensor and a soft finger net-
work design. Due to the unique design with a fully

exposed visual perception of the contact interac-
tions and the integration of learning algorithms,
we achieved multi-modal perception, including
globalized scene segmentation and object detec-
tion, and localized, real-time tactile sensing with
high accuracy, while providing passive adaption
in omni-directions during grasping with the soft
network design. A direct result of the proposed
method is the possibility of removing the exter-
nal camera completely while providing physical
compliance, visual perception, and tactile sensing
at the time using just one in-finger vision, which
is possible based on what we have reported in this
study.

Our work has several limitations. Even though
the XMem is reasonably fast (30 Hz), it is still
far from the chosen camera’s 330 Hz framerate.
The whole pipeline is not as efficient yet, which
requires further optimization for robotic interac-
tions. In this work, we did not fine-tune the ob-
ject detection model for the objects tested, and
the object detection results show mislabeled ob-
ject classes even though they can be detected. The
learned tactile perception model is subject to a
systematic shift when applied to a new finger not
presented in the training dataset due to the slight
difference in the initial template mask of each fin-
ger. Although we fed the initial template mask
along with the instantaneous one, SVAE failed to
encode the geometric deformation compared to
the template mask, probably because it only saw
two templates during training. Besides mitigat-
ing this systematic error by simple subtraction, a
promising way is through data augmentation.

There are a few directions we would like to
explore further in the future. One is underwa-
ter visual perception and tactile sensing using
SeeThruFinger by translating models learned on
land, aiming at dexterous and sensitive explo-
ration underwater.35 Due to the unique design,
the SeeThruFinger can be directly used underwa-
ter if the camera housing is waterproofed, which is
quite simple as there are no dynamic seals. In this
study, only one of the SeeThruFingers’ in-finger
vision was used, but both are fully functional. It
would be interesting to see if the stereo vision for
3D reconstruction or 6D pose estimation based
on the inpainted scene from both in-finger visions
would be possible, which is another exciting di-
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rection we would like to explore further.

Acknowledgements
This work was partly supported by the Na-

tional Natural Science Foundation of China
[Grant: 62206119], the Science, Technology,
and Innovation Commission of Shenzhen Mu-
nicipality [Grant: ZDSYS20220527171403009,
JCYJ20220818100417038], the SUSTech-MIT
Joint Centers for Mechanical Engineering Re-
search and Education, Guangdong Provincial Key
Laboratory of Human Augmentation and Rehabil-
itation Robotics in Universities.

Author Disclosure Statement
The authors declare that they have no compet-

ing interests.

References
1 N. Sünderhauf, O. Brock, W. Scheirer, R. Had-

sell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel,
W. Burgard, M. Milford, and P. Corke,
“The Limits and Potentials of Deep Learn-
ing for Robotics,” The International Journal of
Robotics Research, vol. 37, no. 4-5, pp. 405–
420, 2018.

2 P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim,
“Robust Regression Methods for Computer Vi-
sion: A Review,” International Journal of Com-
puter Vision, vol. 6, pp. 59–70, 1991.

3 A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rol-
land, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick,
“Segment Anything,” 2023.

4 H. K. Cheng and A. G. Schwing, “XMem:
Long-Term Video Object Segmentation with
an Atkinson-Shiffrin Memory Model,” in Com-
puter Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXVIII, pp. 640–658,
Springer, 2022.

5 G. Huang, Z. Liu, L. Van Der Maaten, and
K. Q. Weinberger, “Densely Connected Convo-
lutional Networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, 2017.

6 E. Murphy-Chutorian and M. M. Trivedi, “Head
Pose Estimation in Computer Vision: A Sur-
vey,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 31, no. 4,
pp. 607–626, 2008.

7 T. Yu, R. Feng, R. Feng, J. Liu, X. Jin, W. Zeng,
and Z. Chen, “Inpaint Anything: Segment Any-
thing Meets Image Inpainting,” 2023.

8 B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T.
Barron, R. Ramamoorthi, and R. Ng, “NeRF:
Representing Scenes as Neural Radiance Fields
for View Synthesis,” Communications of the
ACM, vol. 65, no. 1, pp. 99–106, 2021.

9 D. Howard, A. E. Eiben, D. F. Kennedy, J.-B.
Mouret, P. Valencia, and D. Winkler, “Evolving
Embodied Intelligence from Materials to Ma-
chines,” Nature Machine Intelligence, vol. 1,
no. 1, pp. 12–19, 2019.

10 R. M. Murray, Z. Li, and S. Shankar, A Math-
ematical Introduction to Robotic Manipulation.
CRC press, 1994.

11 J. J. Craig, Introduction to Robotics. Pearson
Educacion, 2006.

12 K. M. Lynch and F. C. Park, Modern Robotics.
Cambridge University Press, 2017.

13 P. I. Corke and O. Khatib, Robotics, Vision and
Control: Fundamental Algorithms in MATLAB,
vol. 73. Springer, 2011.

14 Y. LeCun, Y. Bengio, and G. Hinton, “Deep
Learning,” Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

15 O. Kroemer, S. Niekum, and G. Konidaris, “A
Review of Robot Learning for Manipulation:
Challenges, Representations, and Algorithms,”
Journal of Machine Learning Research, vol. 22,
no. 30, pp. 1–82, 2021.

16 OpenAI, I. Akkaya, M. Andrychowicz,
M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas,



8 WAN ET AL

J. Schneider, N. A. Tezak, J. Tworek, P. Welin-
der, L. Weng, Q. Yuan, W. Zaremba, and L. M.
Zhang, “Solving Rubik’s Cube with a Robot
Hand,” ArXiv, 2019.

17 S.-F. Zhang, J.-H. Zhai, B.-J. Xie, Y. Zhan, and
X. Wang, “Multimodal Representation Learn-
ing: Advances, Trends and Challenges,” in
2019 International Conference on Machine
Learning and Cybernetics (ICMLC), pp. 1–6,
2019.

18 F. Wan, H. Wang, X. Liu, L. Yang, and C. Song,
“DeepClaw: A Robotic Hardware Benchmark-
ing Platform for Learning Object Manipula-
tion,” in 2020 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics
(AIM), pp. 2011–2018, 2020.

19 M. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srini-
vasan, S. Savarese, L. Fei-Fei, A. Garg,
and J. Bohg, “Making Sense of Vision and
Touch: Learning Multimodal Representations
for Contact-Rich Tasks,” IEEE Transactions on
Robotics, vol. PP, pp. 1–15, 03 2020.

20 Y. Liu, R. Bao, J. Tao, J. Li, M. Dong, and
C. Pan, “Recent Progress in Tactile Sensors and
Their Applications in Intelligent Systems,” Sci-
ence Bulletin, vol. 65, no. 1, pp. 70–88, 2020.

21 Q. Li, O. Kroemer, Z. Su, F. F. Veiga,
M. Kaboli, and H. J. Ritter, “A Review
of Tactile Information: Perception and Ac-
tion through Touch,” IEEE Transactions on
Robotics, vol. 36, no. 6, pp. 1619–1634, 2020.

22 S. Zhang, Z. Chen, Y. Gao, W. Wan, J. Shan,
H. Xue, F. Sun, Y. Yang, and B. Fang, “Hard-
ware Technology of Vision-Based Tactile Sen-
sor: A Review,” IEEE Sensors Journal, vol. 22,
no. 22, pp. 21410–21427, 2022.

23 E. Macaluso and A. Maravita, “The Represen-
tation of Space Near the Body through Touch
and Vision,” Neuropsychologia, vol. 48, no. 3,
pp. 782–795, 2010.

24 K. Shimonomura, “Tactile Image Sensors Em-
ploying Camera: A Review,” Sensors, vol. 19,
p. 3933, 09 2019.

25 H. Sun, K. J. Kuchenbecker, and G. Martius, “A
soft thumb-sized vision-based sensor with ac-
curate all-round force perception,” Nature Ma-
chine Intelligence, vol. 4, no. 2, pp. 135–145,
2022.

26 W. Yuan, S. Dong, and E. H. Adelson, “Gel-
sight: High-resolution robot tactile sensors
for estimating geometry and force,” Sensors,
vol. 17, no. 12, p. 2762, 2017.

27 C. Sferrazza and R. D’Andrea, “Design, moti-
vation and evaluation of a full-resolution optical
tactile sensor,” Sensors, vol. 19, no. 4, 2019.

28 F. R. Hogan, J.-F. Tremblay, B. H. Baghi,
M. Jenkin, K. Siddiqi, and G. Dudek, “Finger-
STS: Combined Proximity and Tactile Sensing
for Robotic Manipulation,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 10865–
10872, 2022.

29 F. Wan, X. Liu, N. Guo, X. Han, F. Tian, and
C. Song, “Visual Learning towards Soft Robot
Force Control using a 3D Metamaterial with
Differential Stiffness,” in Proceedings of the
5th Conference on Robot Learning (A. Faust,
D. Hsu, and G. Neumann, eds.), vol. 164 of
Proceedings of Machine Learning Research,
pp. 1269–1278, PMLR, 08–11 Nov 2022.

30 Z. Li, C.-Z. Lu, J. Qin, C.-L. Guo, and M.-
M. Cheng, “Towards an End-to-End Framework
for Flow-Guided Video Inpainting,” in 2022
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 17541–17550,
2022.

31 W. Lv, S. Xu, Y. Zhao, G. Wang, J. Wei, C. Cui,
Y. Du, Q. Dang, and Y. Liu, “DETRs Beat YO-
LOs on Real-time Object Detection,” 2023.

32 F. Wan, H. Wang, J. Wu, Y. Liu, S. Ge, and
C. Song, “A Reconfigurable Design for Omni-
Adaptive Grasp Learning,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4210–
4217, 2020.

33 L. Yang, X. Han, W. Guo, F. Wan, J. Pan, and
C. Song, “Learning-Based Optoelectronically
Innervated Tactile Finger for Rigid-Soft Inter-
active Grasping,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 3817–3824, 2021.



SEE AND GRASP ANYTHING WITH A SOFT TOUCH 9

34 F. Perazzi, J. Pont-Tuset, B. McWilliams,
L. Van Gool, M. Gross, and A. Sorkine-
Hornung, “A Benchmark Dataset and Evalu-
ation Methodology for Video Object Segmen-
tation,” in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pp. 724–732, 2016.

35 O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim,
S. Ganguly, H. Stuart, S. Wang, M. Cutkosky,
A. Edsinger, P. Mullins, M. Barham, C. R. Vool-
stra, K. N. Salama, M. L’Hour, and V. Creuze,
“Ocean One: A Robotic Avatar for Oceanic
Discovery,” IEEE Robotics and Automation
Magazine, vol. 23, no. 4, pp. 20–29, 2016.



10 WAN ET AL

List of Figures
1 SeeThruFinger’s in-finger vision for learning visual perception and tactile sensing. 11
2 Experiment setup of the DeepClaw workstation and the network design for su-

pervised variational autoencoder (SVAE). (a) The DeepClaw station used for this
experiment uses the in-finger camera only with the external eye camera unplugged. (b)
Detailed view of the gripper with the SeeThruFinger installed. (c) The SeeThruFin-
ger setup for collecting training data against FT sensors, showing the finger adaptive to
object geometries in spatial twisting, an in-finger camera installed inside a transparent
housing, and a 3D-printed adaptor for customization. (d) The objects used for grasping
later in this study. (e) The SVAE architecture for tactile learning. . . . . . . . . . . . . 12

3 Scene inpainting using in-finger vision for object detection. (a) Full gripper assembly
(Model AG-160-95 by DH-Robotics) with SeeThruFingers. (b) Illustration of scene
scanning by slightly tilting the gripper above the tabletop to take a short video clip
(1s) for inpainting. (c) Selected images at 0 s, 0.5 s, and 1 s from the head-up motion
video clip without the soft finger, with the soft finger, and after inpainting in each row.
(d) Finger mask obtained by threshold segmentation. (e) The inpainting operation. (f)
Object detection using RT-DETR based on the inpainted scene. . . . . . . . . . . . . . 13

4 Tactile sensing using in-finger vision by tracking masks of the soft finger defor-
mation after contact. (a) Omni-directional adaptation of the soft finger used in this
study. (b) After contacting objects, the in-finger vision captures the soft finger’s whole-
body deformation. (c) Tracking with in-finger vision using XMem and the finger mask
to generate segmented image streams of the soft finger’s whole-body deformations for
tactile sensing. (d) Tactile sensing using SVAE, with the left side showing the model
training process and the right side showing hardware deployment, producing 6D forces
and torques as outputs for reactive grasping. (e) Experiment setup for collecting training
data for SVAE. (f) Testing results of SVAE for 6D forces and torques in sequence num-
ber. (g) Quantitative comparison between the predicted values and true labels obtained
from nano25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Learning visual perception and tactile sensing using SeeThruFinger for reactive
grasping. (a) Results of 6D forces and torques recorded for reactive grasping. (b)
Inpainted scene using E3FGV via in-finger vision, where the dashed boxes are inpainted
portions of the objects. (c) Results of object detection using RT-DETR based on the
inpainted scene. (d) The Bosche electrical screwdriver. (e) Detailed plot of the 6D
forces and torques for the reactive grasping of Bosche electrical screwdriver using the
SeeThruFinger and multiple screenshots of in-finger vision. . . . . . . . . . . . . . . 15



SEE AND GRASP ANYTHING WITH A SOFT TOUCH 11

Figure 1. SeeThruFinger’s in-finger vision for learning visual perception and tactile sensing.
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Figure 2. Experiment setup of the DeepClaw workstation and the network design for supervised variational
autoencoder (SVAE). (a) The DeepClaw station used for this experiment uses the in-finger camera only with the external
eye camera unplugged. (b) Detailed view of the gripper with the SeeThruFinger installed. (c) The SeeThruFinger setup for
collecting training data against FT sensors, showing the finger adaptive to object geometries in spatial twisting, an in-finger
camera installed inside a transparent housing, and a 3D-printed adaptor for customization. (d) The objects used for grasping

later in this study. (e) The SVAE architecture for tactile learning.
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Figure 3. Scene inpainting using in-finger vision for object detection. (a) Full gripper assembly (Model AG-160-95 by
DH-Robotics) with SeeThruFingers. (b) Illustration of scene scanning by slightly tilting the gripper above the tabletop to

take a short video clip (1s) for inpainting. (c) Selected images at 0 s, 0.5 s, and 1 s from the head-up motion video clip
without the soft finger, with the soft finger, and after inpainting in each row. (d) Finger mask obtained by threshold

segmentation. (e) The inpainting operation. (f) Object detection using RT-DETR based on the inpainted scene.
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Figure 4. Tactile sensing using in-finger vision by tracking masks of the soft finger deformation after contact. (a)
Omni-directional adaptation of the soft finger used in this study. (b) After contacting objects, the in-finger vision captures
the soft finger’s whole-body deformation. (c) Tracking with in-finger vision using XMem and the finger mask to generate
segmented image streams of the soft finger’s whole-body deformations for tactile sensing. (d) Tactile sensing using SVAE,
with the left side showing the model training process and the right side showing hardware deployment, producing 6D forces
and torques as outputs for reactive grasping. (e) Experiment setup for collecting training data for SVAE. (f) Testing results
of SVAE for 6D forces and torques in sequence number. (g) Quantitative comparison between the predicted values and true

labels obtained from nano25.
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Figure 5. Learning visual perception and tactile sensing using SeeThruFinger for reactive grasping. (a) Results of 6D
forces and torques recorded for reactive grasping. (b) Inpainted scene using E3FGV via in-finger vision, where the dashed

boxes are inpainted portions of the objects. (c) Results of object detection using RT-DETR based on the inpainted scene. (d)
The Bosche electrical screwdriver. (e) Detailed plot of the 6D forces and torques for the reactive grasping of Bosche

electrical screwdriver using the SeeThruFinger and multiple screenshots of in-finger vision.
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Table 1. Evaluation of the SVAE model for in-finger tactile sensing.

MAE
Force (N) Torque (Nm)

fx fy fz τx τy τz
Validation dataset 0.241 0.212 0.14 0.024 0.027 0.005

Test dataset 0.328 0.283 0.24 0.027 0.036 0.005
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