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Abstract: Manipulating objects inside the hand is an essential skill for humans and robots that 1

requires the object’s pose. In-hand object pose estimation is a challenging problem because of the 2

heavy occlusion produced by the hand and object. Humans can perceive the position and orientation 3

of objects with the finger’s kinesthesia; analogously, robots can also estimate object pose with the 4

gripper pose and tactile sensing. Inspired by human fingers, we designed a soft finger integrated 5

inner vision with kinesthetic sensing and a framework for object state estimation based on kinesthetic 6

sensing. This soft finger has a flexible skeleton and skin that is adaptive to different objects, and the 7

skeleton deformations during interaction represent contact information obtained by the image from 8

the inner camera. The framework is an end-to-end method that uses raw images from soft fingers 9

to estimate in-hand object pose, and it consists of two parts: an encoder for kinesthetic information 10

processing and an estimator for object pose and category. We test the fingers and framework on seven 11

objects and get an error of 2.02 mm and 11.34 degrees for pose error and 99.05% for classification. 12

Keywords: object recognition; kinesthetic; humanoid finger; inner-finger vision; deep learning 13

1. Introduction 14

Humans exhibit various manipulative behaviors with the ability to detect the interac- 15

tion behaviors of handled objects and hands. Visual information provides whole and rich 16

features for humans to feel objects’ shapes. But without visual information, humans can 17

still assess object properties, such as size, shape, position, and orientation, using the sense 18

of touch alone [1]. There are many receptors in the skin at different depths on human hands 19

to perceive mechanical stimulus during the interaction. Those receptors empower humans 20

to feel objects relying on the sense of touch: cutaneous and kinesthetic [2]. The cutaneous 21

sense is the modality that depends on direct contact between receptors and objects and is 22

better for feeling the material properties. In contrast, the kinesthetic sense is the awareness 23

of the position and movement of the body. It is better to feel the object’s shape, orientation, 24

etc., from the receptors within muscles, tendons, and joints [3]. Inspired by the kinesthetic 25

sense, we present a soft finger with an embedded camera and a deep learning architecture 26

for object recognition. 27

According to the structure of human hands, many methods have been proposed for 28

hand pose estimation (HPE) problem [4–6]. As the shape of an object and the configuration 29

of a hand (how many fingers are used to manipulate objects and fingers’ positions) are 30

constrained by each other [7], some hand object joint detection methods are proposed 31

which are called hand-object pose estimation (HOPE) [8–10]. Like humans manipulating 32

objects with HOPE, object pose recognition is also a fundamental and challenging task in 33

robotics. 34
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For a manipulation task, perception of the environment and objects is essential [11]. 35

Vision sensors are standard solutions to perceive the environment, and many methods 36

have been proposed for object localization and classification [12–15]. While deep learning 37

significantly improves performance in object recognition problems, the inevitable occlusion 38

is still challenging, especially in dexterous manipulation tasks. Even if we get an object 39

pose with high precision before manipulation, the pose during manipulation in the gripper 40

is still unknown as the inherent uncertainties, tolerances, and noise in the robotic system 41

[16]. 42

Inspired by the HOPE problem, we try to solve the robot gripper-object pose estimation 43

problem with gripper pose estimation. For fully-actuated grippers, we can get the joints’ 44

angles of the gripper from motors and contact states from tactile and force sensors and 45

estimate object pose and category with that information [17–19]. For under-actuated 46

grippers, we need additional sensors to measure extra degrees of freedom (DoF), then 47

estimate object pose, and category [20–22]. 48

Figure 1. Overview of the bio-inspired finger and framework. (A) The raw stimulus is encoded
with low-level processing and then transmitted to the central nervous system (CNS) for high-level
processing such as object recognition; (B) The bio-inspired fingers with flexible skeleton and silicon
gel skin and a framework for object recognition: the raw images from fingers are encoded as latent
vectors, and then used for auxiliary tasks such as pose estimation and object classification.

Those methods mentioned above use multi-sensors in fingers for joints and tactile 49

sensors in the fingertip for contact states and then estimate objects’ poses and categories 50

with CAD models. In this article, we propose a soft, adaptive finger with an integrated 51

camera to infer the finger deformation during interaction with objects, as shown in Figure 52

1. We mount the soft fingers on a gripper to enhance the adaption of the gripper and 53

recognize handle objects with their proprioceptive sensing. Our method uses raw images to 54

estimate objects’ pose and categories with a camera and unknown CAD modes. Instead of a 55

two-stage method to recognize gripper state and pose, our method is one-stage to recognize 56

handled objects’ pose and categories from the raw images. To simplify the training and 57

enhance the reusability of the method, we split the method into two parts: feature extractor 58

for interaction information embedding and post-processor for further manipulation tasks. 59

The feature extractor is an Encoder-Decoder architecture with ResNet block [23], and the 60

post-processor is a multilayer perceptron (MLP) for classification and regression. The main 61

contributions of this paper include the following: First, we design and fabricate a soft finger 62

with an integrated camera inside for proprioception. Second, we propose a frame to extract 63
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and fuse fingers’ data for objects’ states in a gripper. Finally, we test the effectiveness of the 64

proposed method and get high accuracy in pose estimation and classification. 65

2. Materials and Methods 66

2.1. Design and Fabrication of the Soft Finger with Inner Vision 67

In our previous work [24], we leveraged the soft finger with an AruCo marker inside 68

to sense contact force and torque, which encoder the deformation of the finger. In this 69

study, we introduce several improvements to the finger design as shown in Figure 2: 70

• Added silica gel coatings on the finger to isolate the outside environment for a clear 71

background. 72

• Added an LED light for illumination as the coating blocked the outside light. 73

• Removed the AruCo marker and used the finger’s skeleton as a deformation feature. 74

Figure 2. Design and fabrication of the soft finger. (I) The fabrication process of the silica gel skin; (II)
attaching the gel skin to the basic finger skeleton; (III) the integrated finger with an LED and an inner
camera.

As shown in Figure 2, this new design finger contains a finger skeleton with a black 75

coating, a base frame, an LED light, and a camera. The finger skeleton is used vacuum 76

molding for fabrication using polyurethane elastomers (Hei-cast 8400 from H&K) with 77

a mixing ratio of 1:1:0 for its three components to achieve 90A hardness with robust 78

performances. Alternatively, at a lower cost, one can use other fabrication methods, such 79

as Fused Deposition Modeling (FDM) or Stereolithography (SLA). The coating is made of 80

Smooth-On EcoflexTM 00-30 silica gel, and we mixed black pigment to change the color 81

to block the ambient light effectively. Moreover, the silica gel coating’s thickness is 3mm, 82

fabricated individually, and attached to the finger skeleton with an adhesive Valigooo® 83

V-80. The white LED light has enough luminous flux for the camera’s exposure. The chosen 84

camera is Chengyue WX605 from Weixinshijie, with a 640×360 resolution at 330 fps, and 85

the lens is manually adjustable. 86

When grasping objects, the finger skeleton and silica gel coating are deformed, which 87

encodes the interaction information captured by the inner camera. So, we use these fingers 88

to recognize the outside object with captured inner images. 89

2.2. Framework for Handled Object Recognition with the Soft Finger 90

In this section, we present a framework illustrated in Figure 3 to extract kinesthesia 91

features and estimate the object state handled by the gripper. This framework contains two 92

parts: an Encoder-Decoder architecture for feature extraction and two auxiliary multilayer 93

perceptrons (MLP) for estimating the object’s pose relative to the gripper’s coordinate 94
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system and category, respectively. The input of the framework is two fingers’ inner images 95

and the gripper configuration. 96

Figure 3. The architecture of the proposed framework: it takes two resized grayscale images and a
gripper configuration as inputs and predicts the 6D pose and category of the object.

2.2.1. Encoder-Decoder Architecture 97

Specific details of the Encoder-Decoder architecture are shown in Figure 4, the blue 98

block is the encoder, the green block is the decoder, and the yellow vector is the extracted 99

latent vector. The Encoder-Decoder architecture is fully convolutional topology and takes 100

a resized grayscale image I = R1×320×320 as input. It extracts the features representing 101

the finger’s deformation and outputs an N-dimension vector; the decoder reconstructs the 102

image from the feature vector. 103

Figure 4. The Encoder-Decoder architecture of the feature extraction: one resized grayscale image as
inputs and the same size image as output.

The basic blocks of the Encoder-Decoder architecture are 3x3 convolution and ResNet 104

block for extracting features and 1x1 convolution for compressing features. The dense layer 105
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is set to change the latent vector’s dimensions and explore the feature dimensions’ effect to 106

recover the image. 107

Define the input as I, the encoder function as E, the latent vector V, and the decoder
function D, output Z. The Encoder-Decoder architecture can be described as:

V = E(I), (1)

Z = D(V), (2)

(θ̂e, θ̂d) = arg
θe ,θd∈Θ

min Loss(Z, I) (3)

here θ̂e, θ̂d is well trained encoder and decoder parameters, Loss is the loss function between 108

Z and I. 109

2.2.2. Pose Estimation and Classification 110

After extracting the latent feature V, we designed two MLP models to estimate the 111

object’s pose and category as shown in Figure 5. These two models have the same inputs, 112

and the output of the regression model is a 6D pose. In contrast, the output of the classifi- 113

cation model is seven classes with a softmax activation function. In this article, the input 114

vector is 129 dimensions, aggregating the two fingers’ feature V and gripper configuration. 115

In the follow-up work, we set the dimension of V as 64 and the dimension of the gripper 116

configuration as one since the gripper we used is one degree of freedom (DoF), so the input 117

vector is 64 ∗ 2 + 1 = 129 dimensions. The regression model consists of five hidden layers 118

with 200, 200, 100, 100, and 100 neurons, with activation function rectified linear unit (ReLu) 119

[25] and batch normalization [26]. The classification model consists of three hidden layers 120

with 200, 200, and 100 neurons, with activation function ReLu. 121

Define two images taken from the inner cameras of the fingers as IL = RC×H×W , IR =
RC×H×W with height H and width W, gripper configuration as Gc, regression model as Fr,
classification model as Fc, object 6d pose Sp, and object category Sc, the two MLP models
are described as:

VL, VR = E(IL), E(IR), (4)

Vaggregation = Func(VL, VR, Gc), (5)

Sp = Fr(Vaggregation), Sc = Fc(Vaggregation), (6)

Here, Func is a function to combine the vectors in order. 122

Figure 5. Two MLP models of object recognition. Left: a regression model for 6d pose estimation;
Right: a classification model for object categories.
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2.3. Data Collection and Training Setups 123

2.3.1. Data Collection Setup 124

We built an experimental platform to collect training data efficiently to train the 125

framework above, as shown in Figure 6. The designed fingers are mounted on a DH- 126

Robotics AG-160-95 adaptive gripper to replace its tips and pasted AruCo codes on the 127

fingers and grippers to represent their poses. An extra camera is mounted on an optical 128

breadboard to collect the AruCo marker poses, and two cameras in the fingers collect 129

the interaction deformations. The AruCo markers are 4x4 squares of 16mm width with 130

different indexes and are detected by OpenCV [27]. To increase the detection success 131

rate and precision of AruCo markers detection, the outside camera’s resolution is set to 132

1920x1080. The inner camera’s resolution is 640x360 and resized to 320x320 to decrease the 133

model’s size and prediction time. 134

Figure 6. Date collection setup. Four markers are attached to the gripper, fingers, and object. An
outside camera monitors the four markers for the object’s pose; simultaneously, fingers’ deformations
are captured by two inner cameras.

Referring to the article [28], we chose McMaster dataset1 as our test objects. In addition 135

to the objects from the McMaster dataset, we also chose three basic geometric solids. All 136

objects are resized to adjust the gripper width and 3D-printed for final usage as shown 137

in Figure 7. When collecting data, we set the gripper force mode to grasp the object, then 138

shake the object manually to collect the object poses. We collect 5,000 samples for each 139

object. 140

After collection, all poses are transferred to the gripper coordinate system for stan- 141

dardization. Define P = (x, y, z, rx, ry, rz) as a pose, here (x, y, z) is translation and 142

(rx, ry, rz) is orientation. Instead of using the object CAD model, we use the relative 143

change to represent the object’s pose without the object model. Define reference pose 144

P0 = (x0, y0, z0, rx0, ry0, rz0), current pose Pt = (xt, yt, zt, rxt, ryt, rzt) at time t, the transla- 145

tion matrix Mt = [R|T], so 146

Pt = P0Mt, (7)

and we use Mt to represent the current object pose. 147

1 https://www.mcmaster.com
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Figure 7. Test objects and their properties. Left: 3D printed objects; Right: objects’ sizes and weights.

The left superscript G and C represent the gripper and camera coordinate system 148

variables. G is the gripper coordinate system, and C is the camera coordinate. In-camera 149

coordinate system, the gripper pose, gripper configuration, and object pose indicated by 150

the Aruco marker attached are CPO
t , gripper poses CPH

t , gripper joint poses CPJL
t and CPJR

t 151

in time t. 152

Transfer to gripper coordinate system:

CPO
t = CPH

t · GPO
t , (8)

GPO
t = [CPH

t ]−1 · CPO
t , (9)

GPO
0 = [CPH

0 ]−1 · CPO
0 , (10)

GPO
t = GPO

0 ·G Mt, (11)

In the gripper coordinate system, the object transfer pose GMt is

GMt = [GPO
0 ]

−1 · GPO
t

= [[CPH
0 ]−1 · CPO

0 ]
−1[[CPH

t ]−1 · CPO
t ] (12)

The collected dataset comprises seven objects and 5,000 samples per object, each 153

consisting of two inner images, four poses from the outside camera, and objects’ categories. 154

The resolution of the inner images is the same and is 640x360, and resized to 320x320 for 155

input, and the values are normalized to 0-1. The objects’ pose distributions are shown in 156

Figure 8. 157

2.3.2. Network Training Setup 158

To improve the reusability and expansibility of the network, we trained the Encoder- 159

Decoder reconstruction and the auxiliary tasks in two stages using the dataset collected in 160

the previous section. 161

In the first stage, the Encoder-Decoder reconstruction is self-supervised learning. The 162

dataset is randomly split into 8:2; 56,000 images are used for training, and 14,000 are used 163

for evaluation. It was trained with a batch size of 32 using an Adam optimizer with a 164

learning rate 0.001 on mean squared error loss (MSELoss). The latent vector V is set to 8, 165

16, 32, 64, 128, and 256 to determine the best network configuration. The training epoch is 166

set to 200, and we save the weights with the lowest training loss. 167

We froze the Encoder’s weights in the second stage and only trained the following
auxiliary tasks. For the regression model, we trained an MLP model for each object. Using
the split dataset above, 4,000 samples are used for training, and 1,000 are used for evaluation
for each object. The batch size is 32, the optimizer is Adam optimizer, and the learning rate
is 0.001. As the 6D pose consists of two parts, translation and orientation, we define the
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Figure 8. Distribution of the dataset. All data have been normalized by subtracting the mean value,
(A) translation distribution, and (B) orientation distribution.

training loss in equations 13-15 where Lt is translation loss, and Lr is orientation loss. The
hyper-parameters α and β are set to 0.01 and 10. The training epoch is set to 100.

Lt =
1
3

3

∑
n=1

(xt
n − x̂t

n)
2, (13)

Lr =
1
3

3

∑
n=1

(xr
n − x̂r

n)
2, (14)

L = αLt + βLr. (15)

For the classification model, we trained an MLP model for all objects together. Using 168

the split dataset above, 28,000 samples are used for training and 7,000 for evaluation. The 169

batch size is 256, the optimizer is Adam optimizer, the learning rate is 0.001, and the training 170

loss is cross-entropy loss. The training epoch is set to 100. 171

3. Results and Discussion 172

3.1. Dimension of the Latent Vector 173

To find an optimal dimension of the latent space, we varied the dimension of the latent 174

vector and compared the reconstruction errors using the same training and validation 175

dataset. The dimension of the latent vector is set to 8, 16, 32, 64, 128, and 256, and the 176

corresponding results are shown in Table 1. 177

We scaled all losses such that the loss of 256-dimensional latent space was one. As the 178

dimension increases, the reconstruction loss decreases, and the number of parameters of the 179

model increases. To balance the precision and computational efficiency of the auto-encoder, 180
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Table 1. Effect of the Latent Vector Dimension

Latent Vector dimension
8 16 32 64 128 256

normalized MSELoss 1.37 1.74 1.36 1.09 1.35 1
Parameters (M) 0.57 0.67 0.88 1.29 2.11 3.74

we chose the 64-dimensional latent space, whose loss is comparable to the 256-dimensional 181

space with only 24% of the number of parameters. 182

3.2. Quantitative Evaluation of Object Recognition 183

In this section, we report the accuracy of pose estimation and classification. The
translation error is measured as the Euclidean distance ∥pest − pgt∥2 between the esti-
mated position pest = (x, y, z)est and the ground truth position pgt = (x, y, z)gt [29]. The
orientation error |α|, measured by an absolute angle error, is computed as:

2 cos |α| = Tr(R−1
gt Rest)− 1, (16)

where Rgt and Rest are the estimated and ground truth rotation matrices, Tr is the trace of 184

the matrix. 185

As shown in Figure 9, the translation and orientation errors are significantly different 186

for different objects. The translation error is between 2.02mm and 4.00 mm, and the 187

orientation error is between 11.34 degrees and 31.87 degrees. Object Tube1 has the smallest 188

translation error of 2.02 mm and the smallest orientation error of 11.34 degrees. The object 189

Cylinder has the largest translation error of 4 mm and the largest orientation error of 31.87 190

degrees.

Figure 9. The histogram of pose estimation errors of each object. Translation error is the Euclidean
distance, and rotation error is the absolute orientation error |α|.

191

The inner camera can only perceive the objects’ geometric shape and size as the coating 192

isolates the ambient environment. Objects with complex shapes provide abundant shape 193

features and improve the pose estimation accuracy. On the contrary, the geometric shapes 194

of Tube4, Cylinder, Square prism, and Triangular prism are more similar to a cylinder, 195

resulting in more significant orientation errors among the seven objects. Those objects are 196

symmetrical, but the features around the symmetry axis lack uniqueness, increasing the 197

difficulty of orientation estimation. Comparing the seven objects, the objects’ cross-section 198

shape influences translation error. The columnar objects (tube4, cylinder, and prisms) have 199

a more significant translation error to their similar cross-section shape. 200

Objects’ geometric and texture features are essential elements, and the designed 201

finger is limited to obtain the texture as the black coat, influencing the pose estimation 202

precision. A prominent method to improve the precision is to add more features, such 203

as mounting a camera on the gripper or changing the transparent black coating to obtain 204
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image features. More features increase the complexity of the device and algorithm but 205

improve performance. 206

As the objects have unique 3D shapes and sizes, we get a high classification accuracy 207

of 99.05%, as shown in Figure 10. With the proposed method, we can estimate the handled 208

object’s state with a high accuracy proprioceptive touch of the soft fingers. 209

Figure 10. Confusion matrix of objects classification.

3.3. Reusability and Expansibility of the Framework 210

As described in the framework, the Encoder-Decoder architecture reduces the tactile 211

feature dimensions and unite their format for different type of sensors. This makes the 212

tactile information compact and simplifies the processing flow. For other sensors such as 213

GelSight [30], BioTac2 and magnetic skin [31], the different sensing information can also be 214

represented as a latent vector with a convolutional neural network, graph neural network, 215

or other methods according to the data structure. 216

Then, the extracted tactile features are fused depending on the gripper configuration. 217

In this paper, the fusion features combine two-finger images and gripper configuration 218

and are an input of the auxiliary tasks. For an N-finger gripper, we first extract the tactile 219

information of each finger, then fuse each finger’s features and the gripper configuration, 220

such as joint rotation angles. The gripper configuration represents the joint’s spatial position 221

and can be described as a base pose and the DoF of each finger. As shown in this article, we 222

use AruCo markers to monitor the finger base pose and tactile features of the soft fingers to 223

represent the finger’s DoF, which is independent of hardware. 224

Finally, the fused features are used for downstream tasks. We demonstrate two basic 225

examples: pose estimation and classification of the handled object and get sound results. We 226

can quickly adapt the frame to other tasks using the same fusion features. Benefited from 227

the modular design of the framework, we can extract the tactile features independently, 228

fuse them according to the configuration of the hand, and feed them to different auxiliary 229

2 https://syntouchinc.com
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task models to complete manipulation tasks; this framework applies to scenarios with 230

multi-sensor, multi-gripper, and multitasking. 231

4. Conclusions 232

This paper presents a bio-inspired, soft proprioceptive sensor and a framework for 233

object pose estimation and classification based on the sensor. The proposed soft proprio- 234

ceptive sensor can be extended to different manipulators, providing extra shape adaptation 235

and interaction information. Based on this sensor, we propose an extendable architecture 236

to extract the tactile information and estimate the handled objects’ state. This method 237

achieves a high accuracy of 2.02 mm in translation, 11.34 degrees in orientation, and 99.05% 238

classification accuracy for objects with an unknown CAD model. 239

The finger is not sensitive to small deformation. The pure black skin on the soft finger 240

loses texture features, and the skeleton filters small shape features, limiting the soft finger 241

to perceiving small objects and distinguishing similar shape objects. 242

Future work will explore the transferability of this method on different tactile sensors 243

and grippers. This framework provides a uniform feature extractor for different types of 244

tactile sensor information and an extendable structure for different grippers. Meanwhile, 245

more manipulation tasks can be involved with this method. 246
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