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Abstract: Manipulating objects inside the hand is an essential skill for humans and robots that
requires the object’s pose. In-hand object pose estimation is a challenging problem because of the
heavy occlusion produced by the hand and object. Humans can perceive the position and orientation
of objects with the finger’s kinesthesia; analogously, robots can also estimate object pose with the
gripper pose and tactile sensing. Inspired by human fingers, we designed a soft finger integrated
inner vision with kinesthetic sensing and a framework for object state estimation based on kinesthetic
sensing. This soft finger has a flexible skeleton and skin that is adaptive to different objects, and the
skeleton deformations during interaction represent contact information obtained by the image from
the inner camera. The framework is an end-to-end method that uses raw images from soft fingers
to estimate in-hand object pose, and it consists of two parts: an encoder for kinesthetic information
processing and an estimator for object pose and category. We test the fingers and framework on seven
objects and get an error of 2.02 mm and 11.34 degrees for pose error and 99.05% for classification.

Keywords: object recognition; kinesthetic; humanoid finger; inner-finger vision; deep learning

1. Introduction

Humans exhibit various manipulative behaviors with the ability to detect the interac-
tion behaviors of handled objects and hands. Visual information provides whole and rich
features for humans to feel objects” shapes. But without visual information, humans can
still assess object properties, such as size, shape, position, and orientation, using the sense
of touch alone [1]. There are many receptors in the skin at different depths on human hands
to perceive mechanical stimulus during the interaction. Those receptors empower humans
to feel objects relying on the sense of touch: cutaneous and kinesthetic [2]. The cutaneous
sense is the modality that depends on direct contact between receptors and objects and is
better for feeling the material properties. In contrast, the kinesthetic sense is the awareness
of the position and movement of the body. It is better to feel the object’s shape, orientation,
etc., from the receptors within muscles, tendons, and joints [3]. Inspired by the kinesthetic
sense, we present a soft finger with an embedded camera and a deep learning architecture
for object recognition.

According to the structure of human hands, many methods have been proposed for
hand pose estimation (HPE) problem [4-6]. As the shape of an object and the configuration
of a hand (how many fingers are used to manipulate objects and fingers’ positions) are
constrained by each other [7], some hand object joint detection methods are proposed
which are called hand-object pose estimation (HOPE) [8-10]. Like humans manipulating
objects with HOPE, object pose recognition is also a fundamental and challenging task in
robotics.
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For a manipulation task, perception of the environment and objects is essential [11].
Vision sensors are standard solutions to perceive the environment, and many methods
have been proposed for object localization and classification [12-15]. While deep learning
significantly improves performance in object recognition problems, the inevitable occlusion
is still challenging, especially in dexterous manipulation tasks. Even if we get an object
pose with high precision before manipulation, the pose during manipulation in the gripper
is still unknown as the inherent uncertainties, tolerances, and noise in the robotic system
[16].

Inspired by the HOPE problem, we try to solve the robot gripper-object pose estimation
problem with gripper pose estimation. For fully-actuated grippers, we can get the joints’
angles of the gripper from motors and contact states from tactile and force sensors and
estimate object pose and category with that information [17-19]. For under-actuated
grippers, we need additional sensors to measure extra degrees of freedom (DoF), then
estimate object pose, and category [20-22].
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Figure 1. Overview of the bio-inspired finger and framework. (A) The raw stimulus is encoded
with low-level processing and then transmitted to the central nervous system (CNS) for high-level
processing such as object recognition; (B) The bio-inspired fingers with flexible skeleton and silicon
gel skin and a framework for object recognition: the raw images from fingers are encoded as latent
vectors, and then used for auxiliary tasks such as pose estimation and object classification.

Those methods mentioned above use multi-sensors in fingers for joints and tactile
sensors in the fingertip for contact states and then estimate objects’ poses and categories
with CAD models. In this article, we propose a soft, adaptive finger with an integrated
camera to infer the finger deformation during interaction with objects, as shown in Figure
1. We mount the soft fingers on a gripper to enhance the adaption of the gripper and
recognize handle objects with their proprioceptive sensing. Our method uses raw images to
estimate objects’ pose and categories with a camera and unknown CAD modes. Instead of a
two-stage method to recognize gripper state and pose, our method is one-stage to recognize
handled objects’ pose and categories from the raw images. To simplify the training and
enhance the reusability of the method, we split the method into two parts: feature extractor
for interaction information embedding and post-processor for further manipulation tasks.
The feature extractor is an Encoder-Decoder architecture with ResNet block [23], and the
post-processor is a multilayer perceptron (MLP) for classification and regression. The main
contributions of this paper include the following: First, we design and fabricate a soft finger
with an integrated camera inside for proprioception. Second, we propose a frame to extract
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and fuse fingers’ data for objects’ states in a gripper. Finally, we test the effectiveness of the
proposed method and get high accuracy in pose estimation and classification.

2. Materials and Methods
2.1. Design and Fabrication of the Soft Finger with Inner Vision

In our previous work [24], we leveraged the soft finger with an AruCo marker inside
to sense contact force and torque, which encoder the deformation of the finger. In this
study, we introduce several improvements to the finger design as shown in Figure 2:

* Added silica gel coatings on the finger to isolate the outside environment for a clear
background.

*  Added an LED light for illumination as the coating blocked the outside light.

*  Removed the AruCo marker and used the finger’s skeleton as a deformation feature.

[ I. Pouring and curing1 (1. Bonding of skin | rIII.Assembly of finger
of silicone skin and skeleton
skeleton

silicone with ~
black pigment -

2 front
~ 3D printed silicone skin

base

< _—>—LED

k camera

Figure 2. Design and fabrication of the soft finger. (I) The fabrication process of the silica gel skin; (II)
attaching the gel skin to the basic finger skeleton; (IIl) the integrated finger with an LED and an inner

lateral
\ siliconeskin )

h

\ S

camera.

As shown in Figure 2, this new design finger contains a finger skeleton with a black
coating, a base frame, an LED light, and a camera. The finger skeleton is used vacuum
molding for fabrication using polyurethane elastomers (Hei-cast 8400 from H&K) with
a mixing ratio of 1:1:0 for its three components to achieve 90A hardness with robust
performances. Alternatively, at a lower cost, one can use other fabrication methods, such
as Fused Deposition Modeling (FDM) or Stereolithography (SLA). The coating is made of
Smooth-On Ecoflex™ 00-30 silica gel, and we mixed black pigment to change the color
to block the ambient light effectively. Moreover, the silica gel coating’s thickness is 3mm,
fabricated individually, and attached to the finger skeleton with an adhesive Valigooo®
V-80. The white LED light has enough luminous flux for the camera’s exposure. The chosen
camera is Chengyue WX605 from Weixinshijie, with a 640x360 resolution at 330 fps, and
the lens is manually adjustable.

When grasping objects, the finger skeleton and silica gel coating are deformed, which
encodes the interaction information captured by the inner camera. So, we use these fingers
to recognize the outside object with captured inner images.

2.2. Framework for Handled Object Recognition with the Soft Finger

In this section, we present a framework illustrated in Figure 3 to extract kinesthesia
features and estimate the object state handled by the gripper. This framework contains two
parts: an Encoder-Decoder architecture for feature extraction and two auxiliary multilayer
perceptrons (MLP) for estimating the object’s pose relative to the gripper’s coordinate
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system and category, respectively. The input of the framework is two fingers’ inner images
and the gripper configuration.
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Figure 3. The architecture of the proposed framework: it takes two resized grayscale images and a
gripper configuration as inputs and predicts the 6D pose and category of the object.

2.2.1. Encoder-Decoder Architecture

Specific details of the Encoder-Decoder architecture are shown in Figure 4, the blue
block is the encoder, the green block is the decoder, and the yellow vector is the extracted
latent vector. The Encoder-Decoder architecture is fully convolutional topology and takes
a resized grayscale image [ = R!*320%320 a5 input. It extracts the features representing
the finger’s deformation and outputs an N-dimension vector; the decoder reconstructs the
image from the feature vector.
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Figure 4. The Encoder-Decoder architecture of the feature extraction: one resized grayscale image as
inputs and the same size image as output.

The basic blocks of the Encoder-Decoder architecture are 3x3 convolution and ResNet
block for extracting features and 1x1 convolution for compressing features. The dense layer
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is set to change the latent vector’s dimensions and explore the feature dimensions’ effect to
recover the image.

Define the input as I, the encoder function as E, the latent vector V, and the decoder
function D, output Z. The Encoder-Decoder architecture can be described as:

V =E(I), @
Z=D(V), ©)

(6.,8;,) = arg minLoss(Z,1) ©)]
NEC)

here 6,, éd is well trained encoder and decoder parameters, Loss is the loss function between
Z and I.

2.2.2. Pose Estimation and Classification

After extracting the latent feature V, we designed two MLP models to estimate the
object’s pose and category as shown in Figure 5. These two models have the same inputs,
and the output of the regression model is a 6D pose. In contrast, the output of the classifi-
cation model is seven classes with a softmax activation function. In this article, the input
vector is 129 dimensions, aggregating the two fingers’ feature V and gripper configuration.
In the follow-up work, we set the dimension of V as 64 and the dimension of the gripper
configuration as one since the gripper we used is one degree of freedom (DoF), so the input
vector is 64 * 2 41 = 129 dimensions. The regression model consists of five hidden layers
with 200, 200, 100, 100, and 100 neurons, with activation function rectified linear unit (ReLu)
[25] and batch normalization [26]. The classification model consists of three hidden layers
with 200, 200, and 100 neurons, with activation function ReLu.

Define two images taken from the inner cameras of the fingers as I* =
RE*HXW with height H and width W, gripper configuration as G, regression model as F,,
classification model as F;, object 6d pose S, and object category S, the two MLP models
are described as:

RCXHXW, IR —

Vi, Vr = E(IL), E(IRr), 4)
Vaggregation = FunC(VL/ VR, Gc)/ ®)
Sp =F (Vaggregation)r Sc=F (Vuggregation)r (6)

Here, Func is a function to combine the vectors in order.

Regression Classification
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Figure 5. Two MLP models of object recognition. Left: a regression model for 6d pose estimation;
Right: a classification model for object categories.

107

108

109

122



Version August 30, 2023 submitted to Biosensors 6of 12

2.3. Data Collection and Training Setups
2.3.1. Data Collection Setup

We built an experimental platform to collect training data efficiently to train the
framework above, as shown in Figure 6. The designed fingers are mounted on a DH-
Robotics AG-160-95 adaptive gripper to replace its tips and pasted AruCo codes on the
fingers and grippers to represent their poses. An extra camera is mounted on an optical
breadboard to collect the AruCo marker poses, and two cameras in the fingers collect
the interaction deformations. The AruCo markers are 4x4 squares of 16mm width with
different indexes and are detected by OpenCV [27]. To increase the detection success
rate and precision of AruCo markers detection, the outside camera’s resolution is set to
1920x1080. The inner camera’s resolution is 640x360 and resized to 320x320 to decrease the
model’s size and prediction time.

Gripper Coordi
System

55 | Camera Coordinate
System

Figure 6. Date collection setup. Four markers are attached to the gripper, fingers, and object. An
outside camera monitors the four markers for the object’s pose; simultaneously, fingers” deformations
are captured by two inner cameras.

Referring to the article [28], we chose McMaster dataset' as our test objects. In addition
to the objects from the McMaster dataset, we also chose three basic geometric solids. All
objects are resized to adjust the gripper width and 3D-printed for final usage as shown
in Figure 7. When collecting data, we set the gripper force mode to grasp the object, then
shake the object manually to collect the object poses. We collect 5,000 samples for each
object.

After collection, all poses are transferred to the gripper coordinate system for stan-
dardization. Define P = (x,y,z,rx,ry,rz) as a pose, here (x,y,z) is translation and
(rx,ry,rz) is orientation. Instead of using the object CAD model, we use the relative
change to represent the object’s pose without the object model. Define reference pose
Py = (x0,Y0,20, X0, Y0, 120), current pose Py = (x¢, y¢, z¢, ¥X¢, 1yt, rz¢) at time ¢, the transla-
tion matrix M; = [R]|T], so

P; = PoM;, (7)

and we use M to represent the current object pose.

1 https:/ /www.mcmaster.com
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Tubel Tube2 Tube3 Tubed object size (mm) weight (g)
B Tubel 125*85*55 153
h Tube2 95*70*35 92
- - Tube3 115*80*50 118
Square Triangul
Cylinder Prism Prism Tube4d 145%*20*20 57
' Cylinder 100*40*40 73
Square Prism 100*40*40 73
Triangular Prism 100*40*40 36

Figure 7. Test objects and their properties. Left: 3D printed objects; Right: objects’ sizes and weights.

The left superscript G and C represent the gripper and camera coordinate system
variables. G is the gripper coordinate system, and C is the camera coordinate. In-camera
coordinate system, the gripper pose, gripper configuration, and object pose indicated by
the Aruco marker attached are “P?, gripper poses PH, gripper joint poses CP{ Land CP{ R
in time ¢.

Transfer to gripper coordinate system:

CpO — CpH . GpO, ®)
GPO — [CP{'I]fl X CPO, (9)
“Pg =[Pyt P, (10)

CpP =°PY - My, (11)

In the gripper coordinate system, the object transfer pose *M is

oM, = [CPg) 1 Cpf
= [(CPY) - CR9) 1 (CRH ! OB (12)

The collected dataset comprises seven objects and 5,000 samples per object, each
consisting of two inner images, four poses from the outside camera, and objects’ categories.
The resolution of the inner images is the same and is 640x360, and resized to 320x320 for
input, and the values are normalized to 0-1. The objects” pose distributions are shown in
Figure 8.

2.3.2. Network Training Setup

To improve the reusability and expansibility of the network, we trained the Encoder-
Decoder reconstruction and the auxiliary tasks in two stages using the dataset collected in
the previous section.

In the first stage, the Encoder-Decoder reconstruction is self-supervised learning. The
dataset is randomly split into 8:2; 56,000 images are used for training, and 14,000 are used
for evaluation. It was trained with a batch size of 32 using an Adam optimizer with a
learning rate 0.001 on mean squared error loss (MSELoss). The latent vector V is set to §,
16, 32, 64, 128, and 256 to determine the best network configuration. The training epoch is
set to 200, and we save the weights with the lowest training loss.

We froze the Encoder’s weights in the second stage and only trained the following
auxiliary tasks. For the regression model, we trained an MLP model for each object. Using
the split dataset above, 4,000 samples are used for training, and 1,000 are used for evaluation
for each object. The batch size is 32, the optimizer is Adam optimizer, and the learning rate
is 0.001. As the 6D pose consists of two parts, translation and orientation, we define the
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Translation Value (mm)

Orientation Value (degree)
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Distribution of Translation Data

Square Triangular
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Figure 8. Distribution of the dataset. All data have been normalized by subtracting the mean value,
(A) translation distribution, and (B) orientation distribution.

training loss in equations 13-15 where L; is translation loss, and L, is orientation loss. The
hyper-parameters « and f are set to 0.01 and 10. The training epoch is set to 100.

13 A
Le=3 ) (= %)% (13)
n=1
1 2 r NAVA
Ly =3 Y (xp — %)% (14)
n=1
L = aL; + BL,. (15)

For the classification model, we trained an MLP model for all objects together. Using
the split dataset above, 28,000 samples are used for training and 7,000 for evaluation. The
batch size is 256, the optimizer is Adam optimizer, the learning rate is 0.001, and the training
loss is cross-entropy loss. The training epoch is set to 100.

3. Results and Discussion
3.1. Dimension of the Latent Vector

To find an optimal dimension of the latent space, we varied the dimension of the latent
vector and compared the reconstruction errors using the same training and validation
dataset. The dimension of the latent vector is set to 8, 16, 32, 64, 128, and 256, and the
corresponding results are shown in Table 1.

We scaled all losses such that the loss of 256-dimensional latent space was one. As the
dimension increases, the reconstruction loss decreases, and the number of parameters of the
model increases. To balance the precision and computational efficiency of the auto-encoder,
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Table 1. Effect of the Latent Vector Dimension

Latent Vector dimension
8 16 32 64 128 256
normalized MSELoss | 1.37 1.74 136 1.09 1.35 1
Parameters (M) 057 067 0.88 129 211 3.74

we chose the 64-dimensional latent space, whose loss is comparable to the 256-dimensional
space with only 24% of the number of parameters.

3.2. Quantitative Evaluation of Object Recognition

In this section, we report the accuracy of pose estimation and classification. The
translation error is measured as the Euclidean distance | pest — pgt||2 between the esti-
mated position pest = (X,Y,2)est and the ground truth position pgt = (x,y,2)gt [29]. The
orientation error |a|, measured by an absolute angle error, is computed as:

2cos || = Tr(Rg' Rest) — 1, (16)

where R¢t and Res; are the estimated and ground truth rotation matrices, Tr is the trace of
the matrix.

As shown in Figure 9, the translation and orientation errors are significantly different
for different objects. The translation error is between 2.02mm and 4.00 mm, and the
orientation error is between 11.34 degrees and 31.87 degrees. Object Tubel has the smallest
translation error of 2.02 mm and the smallest orientation error of 11.34 degrees. The object
Cylinder has the largest translation error of 4 mm and the largest orientation error of 31.87
degrees.

Pose Estimation Error

[ translation 175
I orientation

|
lel ?

Tubel Tube2 Tube3 Tube4 Cylinder Square Triangular
Prism Prism

= = ~
o wu =3

w
Orientation Error (degree)

Translation Error (mm)

Figure 9. The histogram of pose estimation errors of each object. Translation error is the Euclidean
distance, and rotation error is the absolute orientation error |a|.

The inner camera can only perceive the objects” geometric shape and size as the coating
isolates the ambient environment. Objects with complex shapes provide abundant shape
features and improve the pose estimation accuracy. On the contrary, the geometric shapes
of Tube4, Cylinder, Square prism, and Triangular prism are more similar to a cylinder,
resulting in more significant orientation errors among the seven objects. Those objects are
symmetrical, but the features around the symmetry axis lack uniqueness, increasing the
difficulty of orientation estimation. Comparing the seven objects, the objects’ cross-section
shape influences translation error. The columnar objects (tube4, cylinder, and prisms) have
a more significant translation error to their similar cross-section shape.

Objects’ geometric and texture features are essential elements, and the designed
finger is limited to obtain the texture as the black coat, influencing the pose estimation
precision. A prominent method to improve the precision is to add more features, such
as mounting a camera on the gripper or changing the transparent black coating to obtain

182

183
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image features. More features increase the complexity of the device and algorithm but
improve performance.

As the objects have unique 3D shapes and sizes, we get a high classification accuracy
of 99.05%, as shown in Figure 10. With the proposed method, we can estimate the handled
object’s state with a high accuracy proprioceptive touch of the soft fingers.

Cylinder JeAEN 0.003 0 0 0 0 0

Square |
Prism

Triangular { g

- 0 0
Prism

0.023

w
s
E Tubel 4 0.001 0 0.0062 0.007 0.0021
2
}_
Tubez 4 0 0 0.0031 0.0062
Tubez 4 0.003 0.003 0 0.001
Tubeg4 { O 0 00031 0 0.001
T T T T T
-4 2 . Ny 4" ] 3
& i N @ @ @
ﬁ;‘b C:}S‘)i‘?@ {\0? & PRSPR PR
< < 4@‘1@&

Predicted label

Figure 10. Confusion matrix of objects classification.

3.3. Reusability and Expansibility of the Framework

As described in the framework, the Encoder-Decoder architecture reduces the tactile
feature dimensions and unite their format for different type of sensors. This makes the
tactile information compact and simplifies the processing flow. For other sensors such as
GelSight [30], BioTac? and magnetic skin [31], the different sensing information can also be
represented as a latent vector with a convolutional neural network, graph neural network,
or other methods according to the data structure.

Then, the extracted tactile features are fused depending on the gripper configuration.
In this paper, the fusion features combine two-finger images and gripper configuration
and are an input of the auxiliary tasks. For an N-finger gripper, we first extract the tactile
information of each finger, then fuse each finger’s features and the gripper configuration,
such as joint rotation angles. The gripper configuration represents the joint’s spatial position
and can be described as a base pose and the DoF of each finger. As shown in this article, we
use AruCo markers to monitor the finger base pose and tactile features of the soft fingers to
represent the finger’s DoF, which is independent of hardware.

Finally, the fused features are used for downstream tasks. We demonstrate two basic
examples: pose estimation and classification of the handled object and get sound results. We
can quickly adapt the frame to other tasks using the same fusion features. Benefited from
the modular design of the framework, we can extract the tactile features independently,
fuse them according to the configuration of the hand, and feed them to different auxiliary

2 https:/ /syntouchinc.com
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task models to complete manipulation tasks; this framework applies to scenarios with
multi-sensor, multi-gripper, and multitasking.

4. Conclusions

This paper presents a bio-inspired, soft proprioceptive sensor and a framework for
object pose estimation and classification based on the sensor. The proposed soft proprio-
ceptive sensor can be extended to different manipulators, providing extra shape adaptation
and interaction information. Based on this sensor, we propose an extendable architecture
to extract the tactile information and estimate the handled objects” state. This method
achieves a high accuracy of 2.02 mm in translation, 11.34 degrees in orientation, and 99.05%
classification accuracy for objects with an unknown CAD model.

The finger is not sensitive to small deformation. The pure black skin on the soft finger
loses texture features, and the skeleton filters small shape features, limiting the soft finger
to perceiving small objects and distinguishing similar shape objects.

Future work will explore the transferability of this method on different tactile sensors
and grippers. This framework provides a uniform feature extractor for different types of
tactile sensor information and an extendable structure for different grippers. Meanwhile,
more manipulation tasks can be involved with this method.
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