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Abstract— This study presents a multi-modal mechanism
for recognizing human intentions while diving underwater,
aiming to achieve natural human-robot interactions through
an underwater superlimb for diving assistance. The underwater
environment severely limits the divers’ capabilities in intention
expression, which becomes more challenging when they intend
to operate tools while keeping control of body postures in 3D
with the various diving suits and gears. The current literature
is limited in underwater intention recognition, impeding the
development of intelligent wearable systems for human-robot
interactions underwater. Here, we present a novel solution to
simultaneously detect head motion and throat vibrations under
the water in a compact, wearable design. Experiment results
show that using machine learning algorithms, we achieved high
performance in integrating these two modalities to translate
human intentions to robot control commands for an underwater
superlimb system. This study’s results paved the way for future
development in underwater intention recognition and underwa-
ter human-robot interactions with supernumerary support.

I. INTRODUCTION

Diving with Self-Contained Underwater Breathing Appa-
ratus (SCUBA) is a popular activity for exploring the ocean,
which involves a series of professional equipment wearable
on the human body for life-support and body movement
[1]. However, the level of intelligence of these diving gears
remains primarily mechanical by design. There remains a
research gap in introducing robotic solutions toward au-
tonomous, natural interactions between human divers and the
underwater environment, where novel designs in wearable
robots and interactive mechanisms need further exploration
[2].

Before introducing wearable robots to assist human divers,
intention recognition underwater becomes a critical issue
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Fig. 1. Summary of the underwater intention recognition method using
wearable IMU and throat microphone. (A) Diver with standard diving
equipment, including a diving backpack, diving mask, diving computer,
diving suit, flipper, oxygen cylinder, etc. (B) The IMU headband can
collect the motion information of the six types of head motion, including
extension/flexion, bending left/right, and rotating left/right. (C) The throat
microphone can acquire the throat vibration, including the first five musical
scales (“do”, “re”, “mi”, “fa”, and “so”). (D) Based on the servo angle
definition of the superlimb, we define five types of motion modes. δ1 and
δ2 are the angles of the left and right thrusters. n1,n2 and T1,T2 are the
rotational speed and the thrust force of the left and right thruster, which can
be controlled continuously. (E) The five motion modes mapping from the
classification token with head motion or/and throat vibration.

due to challenges brought by the aquatic environment. Cur-
rently, hand gestures are the most effective method for diver
communication [3]. However, when submerged underwater,
the divers must constantly move all limbs to maintain body
postures against the water, making it physically demanding
and mentally exhausting to spare extra attention to hand
gestures or tool operations. The water greatly limited divers’
sense of the environment while restricting regular verbal
communications or facial expressions, making it urgently
necessary to develop novel solutions for intention recognition
underwater for effective human-robot interactions [4].

One way to drive novel designs for aquatic systems is
by drawing inspiration from on-land systems to underwater
applications, where the integration of head motion and throat
vibration seems viable. For example, recent work by Yang
[5] demonstrated an artificial throat to check vocal vibrations
to recognize everyday words vaguely spoken by a patient
after a laryngectomy. Wang [6] proposed a method through
detecting eye motions and throat vibrations to interpret
the intention of patients with amyotrophic lateral sclero-
sis (ALS). Severin [7] developed a system using inertial
sensors to detect head movement for intention recognition.
Machangpa [8] designed a wheelchair controlled by head



gestures for quadriplegic patients. Although the divers’ limbs
are busy maintaining body postures and the mouth is filled
with the BCD, we can still leverage such limitations to
use the head and throat to express intentions for controlling
wearable robots underwater, such as an underwater superlimb
[9].

In this paper, we propose a novel solution for underwater
intention recognition by simultaneously detecting the diver’s
head motion and throat vibration, as shown in Fig. 1, to
enable multi-modal human-robot interactions with an un-
derwater supernumerary robotic limb designed for providing
propulsion assistance. The design features customization of
the goggle with a waterproof IMU sensor mounted on top and
a throat microphone on the neck for hands-free interaction.
The system determines the diver’s intention by sensing the
diver’s head motion through the IMU sensor, then confirms
the control commands by detecting the diver’s vocal vibration
through the throat microphone using learning algorithms. By
designing mapping commands to the underwater superlimb,
the system recognizes the diver’s intention for posture control
underwater, aiming at reducing the diver’s physical load and
mental fatigue for nature interactions without using hands.
The contributions of this study are as the following:

• Proposed a novel design for underwater intention recog-
nition by sensing the diver’s head motion and throat
vibration in a compact form factor for diving scenarios.

• Developed a multi-modal, real-time classification algo-
rithm based on five musical scales and six head motion
types for intention recognition underwater.

• Verified the feasibility of the proposed method for
controlling an underwater superlimb prototype with con-
tinuous motion commands for underwater propulsion
assistance.

The rest of this paper is organized as the following.
Section II presents the diver intention recognition method
of the wearable sensing device, including the engineering
design and classification algorithm for head motion and
throat vibration. Section III reports the experiment results
using head motion, throat vibration, and combined modalities
for superlimb control. Section IV discusses the experiment
results and implications. The conclusion, limitations, and
future work are in the final section.

II. METHOD

A. Engineering Design

We designed a multi-modal sensing system as shown in
Fig. 2 for underwater intention detection. The IMU sensor
can be fixed on the head using the headband, as shown in
Figs. 2A&C, picking up Euler angles and accelerations of
head motion at up to 500Hz in 16 bits. The throat microphone
is wearable on the neck to detect throat vibration at 16k
or 60kHz in 16 bits, as shown in Fig. 2B. To protect the
IMU from water eroding, we sealed the waterproof shell
with silicone and sealant (Epoxy sealant for seawater from
ROVMAKER). We modified the mask design (M8038 from
SMACO), as shown in Fig. 2D, to adjust the IMU sensor’s

Fig. 2. Engineering design of the wearable sensing devices to collect the
head motion and throat vibration data underwater. (A) IMU headband
with a waterproof shell integrated with a 9-axis IMU (3DX-GX3-25 from
Parker Hannifin), sealed by a silicone layer and a silicone sealant layer.
(B) Throat microphone (WZ033 from WADSN Corp.) smeared with a
polyurethane waterproofing spray (from SKSHU). (C) A test user is wearing
the waterproof IMU sensor with the headband (on land). (D) The IMU
sensor mounted on a full-face diving mask (for underwater).

angle by turning the knob of the joint on top. The design
of the IMU headband is compatible with the full-face diving
mask for SCUBA divers, which connects the oxygen tank
with a regulator for SCUBA diving.

B. Detecting Head Motions and Throat Vibrations

We used different methods to process the two time-series
data collected, as shown in Fig. 3. We adopted the DTW
algorithm to distinguish six types of head motion (bending
left/right, rotating left/right, extension/flexion), commonly
used to process IMU data [10]. The raw data from the IMU
sensor (Accelerations and Euler Angles) was smoothed by a
low-pass filter. Then, a self-adapting threshold segmentation
method extracted the segment with the practical meaning of
instructions. The DTW algorithms maximize the difference
between time series from different head motion types and
minimize the distance between those of the same kind [11].
Since the ADBA algorithm can average the motion data
sequences in time and space, this time-series averaging
template selection method has a higher recognition accuracy
than a randomly averaged algorithm. It was used to generate
the DTW data sequence template for the six head motion
types [12]. 1,436 head motion samples were collected from
two male and two female participants (bending left/right:
280/288, Extension/Flexion: 270/266, Rotating left/right:
296/306). Half of the dataset was used to generate the head
motion template, and the rest was used for testing. Results
show that the head motion recognition accuracy is measured
at an average of 94%, as shown in Fig. 4A.

However, the result was unsatisfactory when we applied
the same method for throat vibration data. Instead, we
adopted the Mel-frequency cepstral coefficients (MFCCs)
to extract features in speech recognition [13]. Alternatively,
we can also use Long Short Term Memory (LSTM) as a
candidate algorithm for acoustic modeling of speech [14]. We
collected throat vibration signals using a throat microphone
and the Mel filter banks to transform the audio signal to



Fig. 3. Underwater interaction method based on the wearable sensing
devices integrated with throat microphone and IMU. (A) The IMU
can sense the head motion information, including acceleration and Euler
angles. After the endpoint detection method based on adaptive thresholds,
segments would be matching using DTW algorithm to distinguish the
head motion types based on the head motion templates. (B) The throat
microphone can acquire the vibration of the throat. After noise reduction,
the significant fragments of the raw signal are extracted through the endpoint
detection method. Mel-filter bank analysis transforms these fragments into
Mel-frequency cepstral coefficients (MFCCs). After LSTM processing and
classification recognition, the command index can be mapped to a user-
defined motion mode sent to control the superlimb.

Fig. 4. Accuracy of recognition-related performance in the classifica-
tion experiments. (A) Confusion matrix of head motion classification with
IMU. (B) Confusion matrix of throat vibration classification with a throat
microphone.

MFCCs. After pre-processing the raw data, we obtained a 20
× 20 matrix by cutting off the MFCCs matrix or padding the
zeros matrix into the time dimension of the MFCCs matrix,
which describes the response of the human auditory system
for the specific audio signal. Then, we fused the MFCCs
matrix as the input of LSTM to get a classification result for
the throat vibration. Ten participants (seven males, and three
females) were invited to collect the throat vibration signal for
data acquisition. They were asked to phonate musical scales
with the throat microphone shown in Fig. 2B. We collected a
dataset of 3,253 musical scale audio segments in WAV format
containing 647 “do”, 660 “re”, 594 “mi”, 668 “fa”, and 684
“so”, which were then split with 70% for training and 30%
for testing. The model’s average accuracy for testing is about
86%. The confusion matrix of the classification results is
shown in Fig. 4B.

III. RESULTS

A. Intention Recognition via Head Motion

We divided the head motions into two groups to control
the speeds and angles of the two thrusters, respectively, as
shown in Table I.

TABLE I
MAPPING BETWEEN THE HEAD MOTIONS WITH SUPERLIMB CONTROL.

Head Motion Euler Angle Thruster Speeds4

Flexion α (−K1 ∗α,−K1 ∗α)
Extension α (K1 ∗α,K1 ∗α)

Head Motion Euler Angle Angle of Servos1

Left Bending β (K2 ∗β ,K2 ∗β )
Right Bending β (−K2 ∗β ,−K2 ∗β )
Left Rotation γ (−K3 ∗ γ,K3 ∗ γ)
Right Rotation γ (K3 ∗ γ,−K3 ∗ γ)

1 Angle of Servos are those of the left and right ones.
2 K1 is the degree coefficient for α .
3 K2 is the degree coefficient for β .
4 Thruster Speeds are those of the left and right ones.
5 K3 is the coefficient converting γ to the thrusters

speed.

Fig. 5 demonstrates the human-robot interactions exper-
iments. The time series of accelerations and Euler angles
along the x/y/z axis recorded by IMU are shown in Figs.
5A&B. The corresponding control command sequence is
shown in Fig. 5C, where the mapping of head motions to con-
trol command index is (Flexion/Extension, bending left/right,
rotating left/right) 7→ command index: (1,2,3,4,5,6). We
executed four actions in each of the three DoFs of the
rotation. The Euler angles range smoothly within [45°,50°]
for Flexion, [70°,80°] for Extension, [35°,45°] for Bending
left/right, and [65°,75°] for Rotating left/right, respectively.
The system recognized all 12 head motions correctly, and the
corresponding control commands were sent to the superlimb
afterward.

Fig. 5. Control of the superlimb using head motion. (A) Accelerations
along the x−y−z axis of the head motion from the IMU during the control
process of the superlimb. (B) Euler angles along the x− y− z axis of the
head motion from the IMU during the control process of the superlimb.
(C) According to the motion information of the data sequence by the head
motion recognition algorithm, the command index was classified and sent
to the controller unit of the superlimb.

Fig. 6 compares the control command and actual feedback
of the servos and thrusters from the superlimb, indicating that
the pipeline can detect human intentions and achieve robot
control continuously with low latency (less than one second).
However, to achieve precise control of the thrusters through
the Euler angles of the head motion, an operator would need
training and practice to obtain muscle memories of finer-
grained mapping between head motions and robot control.



Such activity involves humans in the loop as a human-robot
system though the robot system alone is an open control
loop.

Fig. 6. Experimental results of superlimb control with head motion
recognition experiment: comparing theoretical output and actual feed-
back of the superlimb . (A) The Control command and the actual feedback
of the left servo. (B) The Control command and the actual feedback of the
right servo. (C) The PWM command is sent to the left and right thruster
based on the classification token output from the head motion recognition
algorithm.

B. Intention Recognition via Throat Vibration

We designed a mapping between musical scales and both
thrusters’ angle and speed for the throat vibration signal
in Table II. Three types of musical scales and lengths
distinguish six kinds of control commands. Meanwhile, the
amplitude A of the musical scale signal (within 64 ms) is
detected in real-time continuously and is used as a coefficient
in each of the six commands. For example, a short type of
“do” is mapped to rotating both thrusters to positive angles
(show in Fig .1 E(v)) determined by its amplitude A1.

TABLE II
MAPPING SUPERLIMB CONTROL WITH THROAT VIBRATION

RECOGNITION EXPERIMENT

Musical Scale Duration Amplitude Angle of Servo1

do t < 500ms A1 (A1 ∗K4, A1 ∗K4)
do t > 500ms A2 (−A2 ∗K4,−A2 ∗K4)
re t < 500ms A3 (−A3 ∗K4, A3 ∗K4)
re t > 500ms A4 (A4 ∗K4,−A4 ∗K4)

Musical Scale Duration Amplitude Thruster Speeds3

mi t < 500ms A5 (A5 ∗K5, A5 ∗K5)
mi t > 500ms A6 (−A6 ∗K5, −A6 ∗K5)

1 Angle of Servos are those of the left and right ones.
2 K4 is the degree coefficient for throat vibration amplitude.
3 Thruster Speeds are those of the left and right ones.
4 K5 is the coefficient converting throat vibration amplitude to thruster

speed.

We demonstrate the human-robot interaction through
throat vibration. Fig. 7 shows the raw signal (solid purple
line) and the recognized musical scales. Every intention
consists of two sequential waveform segments, with the first
indicating the type of command (pink shaded areas) and
the second for the amplitude of action (blue shaded areas).
Although one could still express control intentions with the
throat vibration, the user must be trained in vocal control for
the system to recognize the intention effectively. Fig. 8 shows

the theoretical and actual feedback of the servo angles and
the control command of PWM (Range from [1100,1900])
sent to the control module of the thrusters. The blue shaded
area is the action execution of the superlimb based on the
corresponding motion mode shown in Fig. 7.

Fig. 7. Waveform of throat vibration acquired by throat microphone
during superlimb control with throat vibration recognition experiment.
Marked in pink shaded areas are the different types of throat vibration, and
marked in blue shaded areas are the throat vibrations used to continuously
control the servo angle and thruster speed of the superlimb according to the
amplitude of the vibration signals.

Fig. 8. Experimental results of superlimb control with Throat
vibration recognition experiment: comparing theoretical output and
actual feedback of the superlimb. (A) The Control command and the
actual feedback of the left servo. (B) The Control command and the actual
feedback of the right servo. (C) The PWM command is sent to the left
and right thruster based on the classification token output from the throat
vibration recognition algorithm.

C. Multi-modal Intention Recognition and Interactions

In this experiment, we test the feasibility of using head
motion and throat vibration simultaneously as a multi-modal
mechanism for controlling the underwater superlimb based
on intention recognition. Table III defines the action vectors
to describe the diver’s robot control intentions mapped to the
throat vibration and head motion.

In this experiment, the musical scale “so” was defined as
the mode switch to control the angle or thruster speed of the
sumperlimb. Fig. 9 compares theoretical output and actual
measurement of the superlimb. We made two observations
in the multi-modal integration experiment. The noticeable
latency of the system could increase to two seconds when
controlling the servos using head motion because of the
different frequencies between these two recognition methods.



TABLE III
MAPPING OF MULTI-MODAL INTENTION RECOGNITION AND

INTERACTIONS EXPERIMENT.

Action vector Left thruster (rpm) right thruster (rpm)
(do,short,null) Accelerate k null
(do,long,null) Accelerate -k null
(re,short,null) null accelerate k
(re,long,null) null accelerate -k
(mi,short,null) stop stop
(mi,long,null) stop stop
(fa,short,null) accelerate k accelerate k
(fa,long,null) accelerate -k accelerate -k
(so,short,null) switch control mode switch control mode
(so,long,null) switch control mode switch control mode
Action vector Left servo (degree) Right servo (degree)
(null,null,left rotation) −90 null
(null,null,right rotation) 90 null
(null,null,left bending) 90 null
(null,null,right bending) −90 null
(null,null,extension) −90 −90
(null,null,flexion) 90 90

1 null means no action.
2 k means the acceleration coefficient of the thrusters.

The misalignment in Fig. 9C is caused by the system
transforming (re, long,null) to (so, long,null). The other ob-
servation is when the extension was not correctly recognized
in Fig. 9, which was caused by an unexpected servo angle
during the experiment. After all, the head motion recognition
module has to lower the frequency of data collection and
classification to meet the frequency of the throat vibration
recognition module.

Fig. 9. Experimental results of multi-modal intention recognition
and interactions experiment: comparing theoretical output and actual
feedback of the superlimb using head motion and throat vibration. (A)
The Control command and the actual feedback of the left servo. (B) The
Control command and the actual feedback of the right servo. (C) The PWM
command sent to the left and right thrusters based on the token output from
the intention recognition algorithm.

IV. DISCUSSION

A. Towards Underwater Intention Recognition
This study presents the engineering design and experiment

results of an underwater multi-modal interaction mechanism
for intention recognition using head motions and throat vi-
brations. Although the reported system is still a lab prototype
that requires further testing underwater, the simple design in
a compact form factor makes the proposed solution promis-
ing for human-robot interactions underwater. For on-land

scenarios, the head motion or the throat vibration has been
demonstrated effective in intention recognition for different
applications with no need for integration. In this study, due
to the need for aquatic interaction, we propose to combine
these two modalities for intention recognition underwater.
The high classification performance reported in this study
aligns with the literature. Our results further demonstrated
that when combining these two modalities, they formulate an
intuitive mechanism for intention expression that is effective
in intention recognition through learning algorithms, which
could be a practical solution for controlling an underwater
superlimb robot.

This study tested only three pairs of head motion and
five musical scales for intention expression and recognition.
However, one can quickly expand the vocabulary by extend-
ing the head motion to the total five degree-of-freedoms of
the head to include the two translational motions. Some users
may need further training before being able to do so fluently.
On the other hand, one can also expand the musical scales
to a broader range or develop the system to recognize a
sequence of them. For example, it is easier for people to
remember a piece of tune rather than the specific musical
scale for differentiating different meanings. The artificial
throat [5] provides an excellent inspiration to expand this
work towards a more natural expression of intentions for the
system to recognize effectively, which we intend to further
explore by using sensors of more compact sizes [15].

B. Learning Intentions via Head Motion & Throat Vibration

In this study, we proposed a multi-modal learning frame-
work for integrating head motion and throat vibration in in-
tention recognition. For on-land scenarios with a clear voice,
one could directly use conventional methods to differentiate
the volume, pitch, and tune from voice signals, a mature
technology already used in commercial products. However,
the experiments in this study specifically chose a learning
approach as the signal detected was through the throat, which
had more noise than those collected from the mouth. On the
other hand, when submerged underwater, the noise signal
from the water would further reduce the quality of the sound
signals, making it a challenging task to classify different
vocal signals clearly. However, our experiment results show
that the learning algorithms effectively classified the different
musical notes hymned by the test user. We intend to further
test the proposed system by collecting training data from
underwater to refine the model for a more realistic scenario.

On the other hand, the experiment results of the com-
bined modalities in controlling the superlimb robot were
successful, real-time, and continuous (please refer to the
supplementary materials for demonstration). Throughout the
experiment, only the head movement and throat vibrations
were used to support hands-free interaction with the under-
water superlimb. Further testing in the aquatic environment
is needed in future work to test the proposed system’s
performance thoroughly. On the other hand, one can easily
extend the application of the proposed method to interact
with other underwater robots, such as UAVs and robotic



fishes, on-land robots, such as robotic manipulators, legged
robots, aerial robots, or mobile robots, or common Internet-
of-Things (IoTs) devices in domestic scenarios. Another
application area is for people with vocal impairment, where
slight modifications could make the system wearable for
users with disabilities.

C. Human-Robot Interactions for an Underwater Superlimb

Humans are not biologically evolved for natural activities
underwater, which influenced the priority of design consid-
erations when developing diving gear. The current diving
devices mainly provide life-support and swimming assistance
in an aquatic environment while being wearable to the diver’s
body forms. With the limited space, the complexity of need,
and the waterproof requirement, two significant challenges
remain in introducing robotic intelligence to diving gear.
One is the design problem for a wearable robot compatible
with the existing diving gear while providing meaningful
assistance underwater to reduce the physical load of the body
limbs. In our previous work [9], we developed a reconfig-
urable underwater jetpack to enable wearable propulsion with
compatible connections to the current BCD system, aiming
at sharing the burdens of manual posture control underwater
so that the diver can spare their hands for tool operation. We
named it an underwater superlimb due to its functionalities
in providing supernumerary limb support for manual posture
control during swimming, similar to other superlimb designs
for on-land scenarios [16].

Intention recognition is the other problem that is yet to be
solved when developing an intelligent wearable underwater
robot, which is shared by the other superlimbs for on-
land scenarios. The proposed solution, while being inspired
by many recent works for on-land scenarios, is found to
be practical for underwater human-robot interactions. With
limited sensory feedback and limited eyesight underwater,
divers usually need to turn their heads constantly for a
better inspection of the surrounding environment, providing
a more explicit cue for expressing intentions without us-
ing their hands. While the diver’s mouth is usually filled
with breathing tubes of the regulator, common language
expression becomes a challenge. Even with a full-face mask,
there are still difficulties in underwater signal or voice
transmission. However, as demonstrated in this study, one
can still leverage the throat vibration to express a wide range
of vocal commands for intuitive and direct interaction.

V. CONCLUSIONS

In this study, we proposed a novel mechanism for un-
derwater intention recognition using head motion and throat
vibration. Experiment results showed that the system accu-
rately classified different intention expressions coded through
these two signals. The proposed multi-modal learning algo-
rithm effectively recognized the intentions of the test user and
controlled the underwater superlimb robot through various
commons.

This study still needs to be improved in collecting data
from the underwater environments for training, which we

intend to conduct once the water pools are open for testing.
The current system was tested on a breadboard, which needs
further integration with the underwater superlimb’s controller
for an integrated system design. Further refinement of the
command mapping between these two modalities and the
robot control commands could be arranged. Nevertheless, the
results of this study paved the foundation for future devel-
opment in underwater intention recognition and underwater
human-robot interactions with supernumerary support.
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