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 Abstract 

This dissertation explores the possibilities to design reconfigurable mechanisms using the 

kinematic and geometric properties of existing overconstrained linkages with revolute joints. 

Despite the large number of overconstrained linkages reported in literatures, there lacks of a 

comprehensive study into the relationship among them, which limits the understanding of the 

overconstrained linkages and their potential applications.  

 

The first part of this dissertation has been devoted to the systematic generalization of a 

series of double-Goldberg linkage families, in which the relationship between a number of 

existing linkages and their variational cases has been revealed. The common link-pair and 

common Bennett-linkage methods have been proposed to connect a Goldberg 5R linkage and 

a subtractive Goldberg 5R linkage to form six types of overconstrained linkage closures. 

Three sub-families, Wohlhart’s double-Goldberg linkages, mixed double-Goldberg linkages 

and double-subtractive-Goldberg linkages, have been generalized to represent the original 

cases, variational cases and subtractive cases of double-Goldberg linkage family. A 

substantial source of design for reconfigurable mechanisms in the Bennett-based linkage 

family has been presented in this part. In the second part, the kinematic study has been 

focused on the general line-symmetric Bricard linkage. The closure equations of the original 

and revised general line-symmetric Bricard linkages have been derived in explicit forms. For 

the general line-symmetric Bricard linkage, two independent and distinct linkage closures 

have been discovered. It has also been revealed that the revised cases are equivalent to the 

original cases with different setups on joint-axis directions. The potential of designing the 

reconfigurable mechanism through kinematic singularity has been demonstrated with the 

bifurcation behavior of the special line-symmetric Bricard linkage with zero offsets.  



 

xviii 

The conceptual designs of reconfigurable mechanisms based on overconstrained linkages 

have been explored in the final part. Both the analytical and construct method have been 

presented to design morphing structures using overconstrained linkages. Based on the double-

Goldberg linkage and the general line-symmetric Bricard linkage, reconfigurable mechanisms 

have been designed with multiple operation forms between 6R and 4R linkages. Furthermore, 

a generic method of link-pair replacement has been developed for reconfiguration purpose, 

which has been applied to reconfigure the topology of different Bennett linkage networks in 

order to obtain different overconstrained mechanisms.  

 

Results in this dissertation could lead to the substantial advancement in the design of 

reconfigurable mechanism with kinematic singularities. In the future work, the methods could 

be applied to design advanced reconfigurable robotic platforms with less actuators but more 

structural support.  



 

 

Chapter 1   

Introduction 

1.1 OVERVIEW 

The initial research interest about the overconstrained linkages was driven by mathematicians 

like Pierre Frédéric Sarrus, Raoul Bricard, Geoffrey Thomas Bennett and Michael Goldberg 

in exploring the extension of planar geometries into three dimensional spaces. These 

pioneers’ work did not receive so many attentions when they were firstly published. There 

were a lot of reasons for such situations. For instance, the original work by Sarrus (1853) and 

Bricard (1897; 1927) were published in French over a century ago. The original work done 

by Bricard (1897) was to answer a mathematical challenge posed by Stephanos (1894) that 

“Do there exist polyhedra with invariant facets that are susceptible to an infinite family of 

transformations that only alter solid angles and dihedrals?” As a result, three types of 

deformable octahedral were derived, which have only one degree of freedom in the present 

context. The engineering potentials of such deformable geometries was later noticed by other 

mathematicians, which open the doors of overconstrained linkages in kinematics and robotics. 

The most famous example is the Bennett linkage (Bennett, 1903; 1914), which is a four-bar 

mechanism moving in the 3D space. The Bennett linkage is later proved to be the only 

overconstrained linkage with four links connected by revolute joints whose axes are neither 

parallel nor concurrent (Delassus, 1922). The pioneering work by Goldberg (1943) is to use 

the Bennett linkage as the basic element to build more complex overconstrained five-bar and 

six-bar linkages. The topic of overconstrained linkages started to get noticed and researched 

in an engineering point of view. From the early 80s until now, J. Eddie Baker did the most 

work in the study and promotion of overconstrained mechanisms. 
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Kinematics is the study about the geometry of motion (Beggs, 1983). Generally, any 

chain of rigid bodies connected by certain movable joints could be considered as a 

mechanism. The mobility of a mechanism is the number of inputs required to determine the 

motion of all links with respect to a fixed reference frame. Once the motion is known, the 

forces which produced that motion may be found by means of dynamics. A linkage is a 

kinematic chain that consists of several rigid links connected by lower pair joints. There are 

six types of lower pair joints, which are defined by the type of surface contact between two 

members if the contact only occurs at the points on the contact surface, including revolute 

pair, prismatic pair, cylindrical pair, helical pair, spherical pair and planar pair. In this 

dissertation, the content is limited to revolute pair (R), or revolute joint, only. In 2D space, 

the mobility of a planar linkage could be correctly calculated by the Kutzbach-Grubler’s 

mobility criterion (Hunt, 1990), which is a significant improvement in engineering 

applications. When the criterion is extended to the 3D space, according to this criterion, the 

mobility M  for a linkage of n  links connected by j  joints can be determined by the 

following equation, 

( ) ∑
=

+−−=
i

n
ifjnM

1
16 , (1.1.1) 

where ( )jif i ...,,2,1=  represents the mobility of joint i . For a single-loop spatial linkage 

with only revolute joints, the number of links and joints are equal, or jn = ; and each 

revolute joint has mobility one, or 1=if . When a linkage has more degrees of freedom than 

the Kutzbach-Grubler’s mobility criterion has predicted, this linkage is overconstrained in 

geometry conditions and therefore categorized as an overconstrained linkage. This definition 

of the overconstrained linkage will be used throughout this dissertation. From Eq. (1.1.1), at 

least seven links are required to construct a single-loop spatial linkage with only one degree 

of freedom. However, when certain geometry conditions are imposed, there exists a number 
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of overconstrained linkages with six, five or four revolute joints that has only mobility one 

during a full-cycle movement.  

 

Besides the Kutzbach-Grubler’s mobility criterion, there are a number of methods 

developed to determine a mechanism’s mobility. Recently, a critical review on the calculation 

of mobility, the main structural and kinematic parameters of a mechanism, was made in 

(Gogu, 2005c) and 35 methods in literature during the past 150 years were summarized and 

analyzed in a systematic manner. Even though it is not the purpose of this dissertation to 

search for an optimal method for modern mechanism mobility calculation (Gogu, 2005a), it 

should be noticed that it remains one of the fundamental and critical problems for the 

advancement of mechanical engineering and there are still a lot of works to be done for a 

clearer method with broader applications in engineering and science. Examples of such effort 

could be found in (Gogu, 2005b), where a new formula for quick calculation of mobility has 

been proposed and demonstrated via the theory of linear transformation. The readers are 

encouraged to pursue advancements in this area in (Gogu, 2008), where new formulas of 

mobility calculations are applied to single- and multi-loop overconstrained linkages which do 

not obey the Kutzbach-Grubler’s mobility criterion. 

 

A machine is the assembly of certain components which consume the energy to perform 

certain intended actions. In mechanical engineering, such machine can be viewed as a 

mechanism which is designed to transform a set of input forces and motions to certain desired 

output forces and motions. The configuration of such mechanism is determined by the 

purpose of design, which is usually presented as certain physical arrangement of the 

mechanical components and parts. To meet the need of engineering applications, it is natural 

for the designer to integrate as many capabilities as possible into just one machine, which 
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could expand its application and reduce the cost of manufacturing. Such efforts usually 

require advanced design methods and control theories to make it work. In general, the 

concept of reconfiguration is to introduce the capability to a machine so that it could change 

its configurations according to the changing task requirements. In this research, efforts are 

made to explore the conceptual designs of such reconfigurable mechanisms using 

overconstrained linkages as the source of design. The motivation comes from the fact that 

such spatial motions generated from the overconstrained linkages could provide new 

possibilities for advanced mechanism designs.  

 

In this dissertation, the exploration to the conceptual designs of reconfigurable 

mechanism using overconstrained linkages is achieved in two steps: 1) what method can be 

used to design and analyze the overconstrained linkages? 2) what kind of reconfigurable 

mechanism could be designed using the overconstrained linkage to achieve the change of 

configurations?  

 

The first step requires the study about the kinematics of overconstrained linkage. Efforts 

have been made in literature to use different mathematical tools, including solid geometry 

(Bennett, 1903; 1914; Bricard, 1897; 1927; Goldberg, 1943), vectors (Dietmaier, 1995a; 

Wohlhart, 1987; 1991b), matrices (Denavit and Hartenberg, 1955), dual quaternion and dual 

number (Yang, 1963), and screw theory (Ball, 1876; Huang, 1992; Mavroidis, 1993). 

However, it is still not clear how the unique geometry conditions enable the mobility of these 

overconstrained linkages. Despite the various overconstrained linkages reported, there still 

lacks of a systematic organization about these linkages, which discourages the development 

for further applications. In this dissertation, the construct methods of common link-pair and 

common Bennett-linkage are used to find the relationship among a wide range of 
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overconstrained linkages in the Bennett-based family. Then, by making use of the geometric 

properties of the general line-symmetric Bricard linkage, a detailed analytical process is 

presented to study the linkage kinematics, where multiple operation forms are found. 

 

The second step is the design of reconfigurable mechanisms using overconstrained 

linkages, where two different conceptual designs are explored in this dissertation. In the first 

conceptual design, the reconfiguration is achieved through kinematic bifurcations. Due to its 

special geometric constraints, certain linkage may present singular behavior on the kinematic 

paths, where the linkage could bifurcate into different operation forms on different kinematic 

paths. The design goal is to reconfigure the linkage by intentionally modifying an existing 

operation form or introducing a new operation form. Construct and analytical methods are 

presented in this dissertation to design a desired multiple operation form of a 4R linkage in 

certain overconstrained 6R linkage. In the second conceptual design, the reconfiguration is 

achieved through geometric reconstruction. In this design, the goal is to find a method that is 

generically applicable so that a wide range of linkage could be reconfigured. The method of 

link-pair replacement is proposed, which could be applied to different networks of Bennett 

linkage for the reconfiguration purposes. As a result, a wide range of overconstrained 6R, 5R 

and 4R linkages in the Bennett-based family are reconfigured from networks of Bennett 

linkages, which encourages the future work to find a suitable engineering application of such 

reconfigurable mechanism. 

 

The remainder of this chapter is organized as follows. Section 1.2 reviews major 

overconstrained linkages that will be addressed in this dissertation. Section 1.3 reviews the 

development of reconfigurable mechanisms. Section 1.4 outlines the organization of the 

remaining chapters in this dissertation. 
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1.2 MAJOR OVERCONSTRAINED LINKAGE FAMILIES 

The Bennett linkage is a spatial 4R linkage found in 1903 by a mathematician, Geoffrey 

Thomas Bennett (1903), from the University of Cambridge. Since then, it has received 

enormous attentions from kinematicians. Various research works has been devoted to the 

invention of single degree of freedom overconstrained linkages by combining two or more 

existing overconstrained linkages. Among them, the Bennett linkage has been a popular 

construct element. Myard (1931) was the first one to form 5R or 6R overconstrained linkages 

with two Bennett linkages. Later, Goldberg (1943) built a family of 5R and 6R linkages with 

two or three Bennett linkages. For the 5R linkage, Baker (1979) re-examined both the 

Myard’s 5R linkages and the Goldberg’s 5R linkages. He pointed out that the former one can 

be considered as a special case of the latter one. Wohlhart (1991a) derived the generalized 

Goldberg 5R linkage in detail, which was initially introduced by Goldberg (1943). The 

closure equations of the generalized Goldberg 5R linkage was also analyzed using screw 

theory by Baker (1983). Lee (2002) gave a comprehensive investigation to the kinematics of 

the generalized Goldberg 5R linkage. Recently, an extended Myard 5R linkage was proposed 

by Chen and You (2008a).  

 

For the overconstrained 6R linkages, besides the 6R linkages proposed by Goldberg (1943) 

and Myard (1931), several linkages were published using construct methods. Waldron (1968) 

merged two Bennett linkages on a common joint and constrained the relative positioning of 

the links from these two Bennett linkages to build a hybrid 6R linkage. Yu and Baker (1981) 

reported a syncopation of Waldron’s hybrid 6R linkage when the 6R linkage was degenerated 

into a Goldberg 5R linkage. Later, Baker (1993a) further utilized Goldberg’s technique and 

derived two variants of the Goldberg 6R linkages. Wohlhart (1991a) found a new 6R linkage 

by firstly merging two Goldberg 5R linkages in a “face-to-face” configuration and then 
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removing the commonly shared links and joint. This 6R linkage was further combined with a 

Bennett linkage to form another 6R linkage with line symmetry (Wohlhart, 1991b). The term 

Bennett-based linkage family was firstly adopted by Baker (1993a) to identify the 

overconstrained linkages constructed with units of Bennett linkages. This was also to 

distinguish them with another important linkage family, the Bricard linkages, which are 

constructed in a different manner. Recently, Chen and You (2007) reported a 6R linkage 

based on the combination of two Goldberg 5R linkages in a “back-to-back” configuration. 

Similar to the Wohlhart’s double-Goldberg 6R linkage, the linkage also can be isomerized 

with a Bennett linkage to form a line-symmetric 6R linkage, which becomes a special case of 

line-symmetric Bricard linkage.  

 

The Bricard linkages form another important linkage family which comprises of three 

deformable octahedrons: the line-symmetric octahedral case, the plane-symmetric octahedral 

case and the doubly-collapsible octahedral case (Bricard, 1897); and three spatial linkages: 

the general line-symmetric case, the general plane-symmetric case and the trihedral case 

(Bricard, 1927). Bricard later pointed out that the line-symmetric octahedral case is a special 

case of the general line-symmetric linkage case (Baker, 1980; Bricard, 1927). Different from 

the Bennett-based linkages, the Bricard linkages were not originally constructed from the 

combination of smaller or simpler units. Instead, different symmetry properties are used in 

the geometry conditions, which enable mobility (Fowler and Guest, 2005; Guest and Fowler, 

2005). Baker (1980) also reviewed the six cases of Bricard linkages. However, the closure 

equations derived by Baker (1980) are in implicit forms which make them impractical to 

conclude their kinematic properties. Phillips (1984; 1990) also reviewed the Bricard linkages 

and their relationship with other overconstrained linkages. 
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The three octahedral cases of Bricard linkages attracted a number of kinematic studies. A 

comprehensive analysis to the three octahedral cases was done by Bennett (1912). Baker 

(1986) noticed the relationship of a special line-symmetric octahedral Bricard linkage in 

stationary and linkage configurations with respect to the conformation of cyclohexane 

molecular in chair and boat forms. The closure equations of these three octahedral cases of 

Bricard linkages were derived analytically using matrix transformation method by Lee (1996). 

Recently, Chai and Chen (2010) found that the line-symmetric octahedral Bricard linkage 

with identical twist and offset always has a stationary structural configuration, which is 

independent from its mobile linkage form. In engineering applications, the octahedral cases 

of Bricard linkages are related to parallel manipulators such as the Stewart-Gough 

Manipulator (Husty, 2000; Husty and Karger, 1996; Husty and Zsombor-Murray, 1994) and 

Triangular Symmetric Simplified Manipulators (Nawratil, 2010; 2011), which are widely 

used as flight simulators and milling machines. The independent work by Nelson (2010; 2012) 

demonstrated the possibilities of building large network of polyhedral with the octahedral 

cases of Bricard linkages. 

 

As for the three linkage cases, a plate-form model of the trihedral Bricard linkage was 

made and analyzed by Goldberg (1974). Yu (1981b) studied the geometry of the trihedral 

case with respect to its circumscribed sphere and associated hyperboloid. Wohlhart’s early 

work (1993) shows that there are actually two distinct cases of the trihedral Bricard linkage. 

Due to their special geometry constraints, reciprocal screw system is extensively used for the 

analysis of Bricard linkages. Using this method, it was found that for any configuration of the 

general line-symmetric Bricard linkage, the central axis of the linear complex defined by the 

joint axes is orthogonally intersected to the linkage’s line of symmetry (Baker and Wohlhart, 

1994). This result was proved numerically by Lee (2000). The reciprocal screw system of the 
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general plane-symmetric six-screw linkage was also analyzed by Baker (1997), which covers 

the plane-symmetric case of Bricard linkage. A further numerical technique was developed 

using the direct elimination of the screw matrix to study the Bricard linkages (Lee, 2000). 

Recently, a threefold-symmetric Bricard linkage was proposed to explore the application of 

Bricard linkage in the design of deployable structures (Chen et al., 2005). A special line and 

plane symmetric Bricard linkage was analyzed with regards to its unique bifurcation 

behaviors (Chen and Chai, 2011). Besides the original cases of Bricard linkages, there are 

linkages found by other researchers that make use of certain symmetry properties to make the 

linkage mobile, such as the Altmann’s linkage (Altmann, 1954), Schatz’s linkage (Schatz, 

1975) and Wohlhart’s hybrid linkage (Wohlhart, 1987), which can be categorized into the 

Bricard linkage family. 

 

1.3 RECONFIGURABLE MECHANISMS 

Generally, reconfigurable mechanism is a mechanical system that can change its spatial 

configuration with different requirements or in different environments. Classical mechanism 

design is usually processed in two-dimensional space, which has proved its efficiency and 

accuracy in engineering applications. However, as the functionality of a designated 

mechanical system increases, the complexity of mechanism design grows. The 

overconstrained linkage provides a feasible source of design for mechanisms with 

reconfiguration capabilities. A number of research interests for the reconfigurable mechanism 

focused on applications in aircraft wing design. The reader is encouraged to pursuit the 

review article by Barbarino, Bilgen, Ajaj, Friswell and Inman (2011) for details. Research 

interests in reconfigurable mechanism design have also been extended to the design of multi-

loop linkages. The mechanism developed by Stubbs, Whittier and Reinholtz (2004) exhibits 

high loading capacity and less actuators, which can be reconfigured between two desired air-
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foil shapes. On the other hand, recent advancement promotes the concept of reconfigurable 

mechanism designs in a broader manner. Generally, three categories of reconfigurable 

mechanisms can be summarized.  

 

The first category is based on the reassembly of identical or similar robotics modules, 

each of which is an integrated system of microprocessors, batteries, sensors and end-effectors 

etc. For the past two decades, research shows that such robotic systems are very adaptive and 

versatile to the changing environments (Fukuda and Ueyama, 1994; Kamimura et al., 2005; 

Yim, 1994). A comprehensive study into the development and applications of modular 

reconfigurable robotic system was done by Chen (1994). Development has been made to 

design a modular reconfigurable robot system for factory automation purpose (Chen and 

Burdick, 1995; Chen and Yang, 1996). 

 

The second category is the metamorphic mechanism (Dai and Rees Jones, 1999; Dai and 

Zhang, 2009; Zhang et al., 2008), which can generate different topologies for 

reconfigurations. It is capable of changing its own shape by rearranging the connectivity of 

its parts. In the past decade, the metamorphic mechanism has been fast developed from 

conceptual study into physical implementation (Zhang and Dai, 2009a) and industry 

application (Dai and Rees Jones, 1999; Seffen et al., 2000).  

 

The third category is based on the transformation among different kinematic paths using 

kinematic singularities (Kong and Huang, 2009; Wohlhart, 1996; 2010), such as 

kinematotropy mechanism (Wohlhart, 1996) and mechanism with bifurcations. The 

kinematotropy mechanism can change its global mobility with positional actuations at the 

transit positions. Galletti and Fanghella (2001) designed a series of kinematotropy 
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mechanisms using the displacement group method. With the group-algebraic approach, Lee 

and Hervé (2005) found that a closed-loop chain can be reconfigured when there are two or 

more subgroups involved in the mechanism. Conceptual designs of mechanisms with desired 

bifurcation paths have also been studied. Kong and Huang (2009) proposed a number of one 

degree of freedom single-loop mechanisms with two operation modes. Wohlhart (2010) also 

proposed a series of multifunctional 7R linkages by inserting an overconstrained 4R, 5R or 6R 

mobile chain into a closed-loop 7R linkage. 

 

1.4 ORGANIZATION OF THE DISSERTATION 

The remaining chapters of this dissertation are organized in the following way. 

 

Chapter 2 reviews fundamentals of the overconstrained spatial linkages. It reviews the 

construction and geometry conditions of the major overconstrained linkages that will be 

addressed in this dissertation. It also reviews the reconfigurable mechanism that will be 

addressed in this dissertation. 

 

Chapter 3 explores methods that can be used to build the double-Goldberg 

overconstrained linkages using two 5R linkages as the building blocks. It presents the detailed 

construction of a mixed double-Goldberg linkage family using a Goldberg 5R linkage and a 

subtractive Goldberg 5R linkage. The original cases, variational cases and subtractive cases 

of the double-Goldberg linkage family are achieved in a similar manner. It demonstrates the 

close relationship between the double-Goldberg linkage family and the Bennett-based linkage 

family, which provides a systematic organization of the Bennett-based overconstrained 

linkages. Works in this chapter provides a substantial source of design for reconfigurable 

mechanisms in the Bennett-based linkage family, which further motivates the design of the 
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multiple operation forms in the double-Goldberg linkages and reconfigurable Bennett 

network in chapter 5. 

 

Chapter 4 derives the explicit closure equations of the original and revised general line-

symmetric Bricard linkage through matrix method. The relationship between these two 

linkages is revealed in this chapter. It presents new linkage closures that were not mentioned 

in previous literatures. It also investigates the bifurcation behaviors of its special case with 

zero offsets. Works in this chapter offers the comprehensive understanding of the general 

line-symmetric Bricard linkage, which motivates the design of multiple operation forms in 

the general line-symmetric Bricard linkage in chapter 5. 

 

Chapter 5 presents several conceptual designs of reconfigurable mechanisms based on 

overconstrained linkages. It firstly challenges the possibilities to introduce the operation form 

of a 4R linkage into a 6R linkage. Examples are demonstrated using the double-Goldberg 6R 

linkages in the Bennett-based linkage family and the general line-symmetric Bricard linkage 

in the Bricard linkage family to achieve this goal. The methods used in this chapter could be 

further applied to design reconfigurable mechanisms based on bifurcations. The second 

conceptual design is the reconfigurable Bennett network. A generic method of link-pair 

replacement is proposed to reconfigure the spatial configuration and mobility of the network. 

When different networks are applied, different types of overconstrained linkages are achieved. 

Results in this chapter demonstrate the potentials and methodologies of using overconstrained 

linkages to design reconfigurable mechanisms with kinematic singularities. 

 

Chapter 6 summarizes the novel development presented in this dissertation. It also makes 

suggestions for possible future research based on this dissertation. 



 

 

Chapter 2   

Review of Overconstrained Linkages and 

Reconfigurable Mechanisms 

2.1 OVERVIEW 

Denavit and Hartenberg (1955) have established a minimum four-parameter system to solve 

the kinematics of spatial mechanisms. In this dissertation, the coordinate system in Fig. 2.1.1 

is attached to each joint in such a way that iz  is along the axis of revolute joint i , and ix  is 

along the direction of link connected to joint i .  

 
 

Fig. 2.1.1 The spatial setup of the parameters. 
 
 

Thus, the relative position between two adjacent joints can be determined as follows: 

• iθ  is the revolute variable, which is the positive angle of rotation from ix  to jx  about 

iz , and usually defined in the range of [ )ππ ,− ; 

• iR  is the offset, which is the normal distance from ix  to jx  along iz , and usually 

defined in the range of ( )∞+∞− , ; 
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• ijα  is the twist, which is the positive angle of rotation from iz  to jz  about jx , and 

usually defined in the range of [ )ππ ,− ; 

• ija  is the length, which is the normal distance from iz  to jz  along jx , and usually 

defined in the range of ( )∞+∞− , . 

 

These four parameters are assembled into a 44×  homogeneous transformation matrix ijT  

for kinematic analysis, as shown in Eq. (2.1.1), where 33×Ro  is the rotational matrix and 13×Tr  

is the translational vector. 
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(2.1.1) 

The necessary condition for a closed loop of n links is that the successive product of the 

transformation matrices must be preserved as a unit matrix. The number of free revolute 

variables is equivalent to the degree of freedom (mobility) of the linkage. 

ITTTT =1342312 n . (2.1.2) 

 

2.2 OVERCONSTRAINED 4R LINKAGES 

It is proved that at least four links are required to produce a linkage with only one degree of 

freedom (Phillips, 1984). The Bennett linkage is the only overconstrained 4R linkage having 

the axes of four revolute joints neither parallel nor concurrent (Bennett, 1903). This linkage 

was also found independently by Borel (Bennett, 1914). The geometry conditions and closure 

equations of the original Bennett linkage are 
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3412 aa = , 3412 αα = , 4123 aa = , 4123 αα = , )4and3,2,1(0 == iRi , (2.2.1) 

23

23

12

12 sinsin
aa
αα

= ; (2.2.2) 

and 

01 =+ 3θθ , 042 =+θθ , (2.2.3) 
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2
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1223

1223
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αα

αα
θθ

−

+

= , (2.2.4) 

respectively. In other literatures, the relationship in Eq. (2.2.3) may be defined as follows. 

πθθ 231 =+ , πθθ 242 =+ . (2.2.5) 

Here, constrained by the domain of definition of the revolute variables in section 2.1, we use 

the relationship in Eq. (2.2.3) to unify representations. The proportional relationship of sine 

of twist over link length is called the Bennett ratio, as shown in Eq. (2.2.2). 

 

A lot of research has been done to study properties of the Bennett linkage. A complete set 

of four-bar linkages connected by cylinder, revolute and prismatic joints with only mobility 

one was given by Savage (1972), in which the Bennett linkage was proved to be the only 

overconstrained four-bar linkage connected by revolute joints. Through the use of tensor 

analysis, Ho (1978) provided the existence criteria of Bennett linkage in a different way. 

Using the screw algebra method, Baker (1978) analyzed the extreme motion in the Bennett 

linkage. Later, a comprehensive comparison analysis about the relationship between the 

Bennett, Goldberg and Myard linkages was given by Baker (1979). Yu (1981a) studied the 

associated tetrahedron and the hyperboloid axes of the Bennett linkage. Explorations on 

possible linkages that could be achieved from Bennett linkages have been conducted 

continuously (Baker and Min, 1986; Yu and Baker, 1981). Methods like axode analysis 
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(Baker, 2001) and screw theory (Perez and McCarthy, 2002) have been used to study the 

kinematics of the Bennett linkage. Extension has been made to create networks of Bennett 

linkages for deployable structures (Chen and Baker, 2005; Chen and You, 2005; 2008b). 

 

Even though the geometry conditions of the Bennett linkage appear to be line-symmetric, 

the relationship in Eq. (2.2.3) indicates that the linkage moves in an asymmetric manner. The 

general line-symmetric geometry requires the geometry conditions and revolute variables on 

the opposite links and joints to be identical. In fact, there exists two solutions to the general 

line-symmetric overconstrained 4R linkage, which was already discussed in (Hervé and 

Dahan, 1983) and (Dalha, 1982). However, such conclusion did not draw the necessary 

attentions from kinematicians. In what follows, we are going to revisit this linkage by 

deriving the geometry conditions and closure equations of these two forms using the matrix 

method. Firstly, we only take the line-symmetric part of the geometry conditions that  

3412 aa = , 3412 αα = , 4123 aa = , 4123 αα = ,  

( )4and3,2,10 == iRi , 

(2.2.6) 

to re-examine the geometry constraints of the linkage. We substitute Eq. (2.2.6) into the 

transformation matrix of the Bennett linkage. 

ITTTT =41342312 . (2.2.7) 

With the homogeneous transformation matrix, we multiply -1
23

-1
12TT  on both side of Eq. (2.2.7). 

-1
23

-1
124134 TTTT = . (2.2.8) 

The relationship for entries (1, 1), (3, 3) and (3, 4) in Eq. (2.2.8) are 

431243211221 sinsincoscoscossinsincoscoscos θθαθθθθαθθ −=− , (2.2.9) 

423122312223122312 cossinsincoscoscossinsincoscos θααααθαααα −=− , (2.2.10) 
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4231221223 sinsinsinsin θαθα aa −= . (2.2.11) 

For non-trivial solutions of a spatial linkage, we can derive from Eq. (2.2.10) that 

42 θθ =  or 42 θθ −= . (2.2.12) 

For the positive relationship that 42 θθ = , the resultant Bennett linkage is found to be in line-

symmetric setup. Substituting 42 θθ =  into Eq. (2.2.11) gives 

23

23

12

12 sinsin
aa
αα

−= . (2.2.13) 

Substituting Eq. (2.2.13) into Eq. (2.2.9), we can derive the closure equation of the Bennett 

linkage in line-symmetric setup as 

3=θθ1 , 42 θθ = , 

2
cos

2
cos

2
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2
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1223
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−

+

= . (2.2.14) 

For the negative relationship that 42 θθ −= , the resultant Bennett linkage is in asymmetric 

setup. Similarly, when substituting 42 θθ −=  into Eq. (2.2.11), we will derive 

23

23

12

12 sinsin
aa
αα

= . (2.2.15) 

And the closure equations of the resultant linkage are the same as Eqs. (2.2.3) and (2.2.4). 

From the above derivations, we find that there are actually two setups of the Bennett linkage: 

one in line-symmetric setup, while the other in asymmetric setup. The one that appears in 

most literatures is the asymmetric setup of the Bennett linkage, which is the same as the 

original appearance of the linkage in (Bennett, 1903). 

 

Since the opposite links in a Bennett linkage share the identical geometry conditions, 

there are actually two different links, link 12 and link 23, in the Bennett linkage defined in Eq. 

(2.2.6). According to Eqs. (2.2.13) and (2.2.15), the symmetric property of the Bennett 
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linkage is determined by the Bennett ratios of links 12 and 23. We prepare two sets of 

parameters α/a  and β/b  as follows to demonstrate the differences. 

0000.1=a , 180/0000.100 πα = , 6527.0=b , 180/0000.40 πβ = . (2.2.16) 

We assign the geometry condition of link 12 to be α/a . If we want to construct a Bennett 

linkage in line-symmetric setup, we can derive from Eq. (2.2.13) the following two sets of 

solutions for link 23. 

βα −== 2323 ,ba  or πβα ±== 2323 ,ba . (2.2.17) 

Similarly, for a Bennett linkage in asymmetric setup, we can derive from Eq. (2.2.15) the 

following two sets of solutions for link 23. 

βα == 2323 ,ba  or πβα ±−== 2323 ,ba . (2.2.18) 

Note that here, we constrain the solutions in domain that [ )+∞∈ ,023a  and [ )ππα ,23 −∈ . It is 

always mathematically possible to use length parameters, including link length and offset, 

with negative values for analytical derivations. However, for the physical setup of the linkage, 

it is recommended in this dissertation to use the solutions of length parameters in the domain 

of [ )+∞,0  to avoid duplicates, which comply with their physical meanings. The drawbacks of 

using negative length parameters will be addressed in chapter 4 when distinguishing the 

difference between the original and revised general line-symmetric Bricard linkages. The 

differences among the above four sets of solutions are illustrated in Fig. 2.2.1.  

 
 

Fig. 2.2.1 The four configurations of link 23. 
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As a result, we can construct four Bennett linkages based on these four sets of solutions. In 

Fig. 2.2.2, there are two Bennett linkages in asymmetric setups: AB-1 and AB-2, which 

comprise of link-pair βα /~/ ba  and link-pair πβα ±−/~/ ba , respectively. There are 

another two Bennett linkages in line-symmetric setups: LB-1 and LB-2, which comprise of 

link-pair βα −/~/ ba  and link-pair πβα ±/~/ ba , respectively. 

 
 

Fig. 2.2.2 The four different Bennett linkages in asymmetric and line-symmetric setups 
( 180/0000.1101 πθ = ). 

 
 

From Fig. 2.2.2, it is found that even though AB-1 and LB-2 have different symmetry 

properties, they share the same configurations in space if we ignore the joint axis directions. 

This is the same for AB-2 and LB-1. Therefore, we can summarize the geometry conditions 

of the Bennett linkage as follows,  

3412 aa = , 3412 αα = , 4123 aa = , 4123 αα = ,  

( )4and3,2,10 == iRi , 
23

23

12

12 sinsin
aa
αα

±= ; 

(2.2.19) 

in which the positively equaled Bennett ratios will produce a Bennett linkage in asymmetric 

setup while the negatively equaled Bennett ratios will produce a Bennett linkage in line-
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symmetric setup. However, as demonstrated in Fig. 2.2.2, for the Bennett linkages in either 

asymmetric or line-symmetric setups, there are always two different configurations of the 

linkage with different joint axis directions. For two Bennett linkages with the same 

configurations in space, one of them is asymmetric while the other is line-symmetric and they 

differ to each other by π  on one of the twists.  

 

In the following context, the Bennett-based linkage family is based on the combination of 

Bennett linkage as the building block. Consider that these linkages only make use of the 

Bennett linkage as a construct unit, thus the above changes in the geometry conditions will 

not affect the configuration of the resultant linkages. But on the geometry conditions, the 

negatively equaled Bennett ratios could be added to generalize the representations. Due to the 

limited influence of this change, we will still use the classical geometry conditions of these 

linkages unless further explanation is required. However, when different symmetry properties 

of the Bennett linkage are taken into consideration, the detailed geometry conditions of the 

asymmetric and line-symmetric Bennett linkages shall be taken into consideration, which will 

be used in the multiple operation forms of the general line-symmetric Bricard linkage in 

chapter 5. 

 

2.3 OVERCONSTRAINED 5R LINKAGES 

2.3.1 Goldberg’s 5R Linkages 

Goldberg’s remarkable work was based on the concept to build overconstrained 5R linkage 

by combining two Bennett linkages, or subtracting them from another primary loop 

(Goldberg, 1943). As shown in Fig. 2.3.1(a), the Goldberg 5R linkage is obtained through the 

summation of two Bennett linkages superposed on a common link β/b  with two adjacent 
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links α/a  and γ/c  collinearly rigidified. After removing the common link and joints, the 

Goldberg 5R linkage will be formed. In Fig. 2.3.1(b), the syncopated Goldberg 5R linkage is 

formed by the subtraction of a Goldberg 5R linkage from a primary Bennett linkage. After 

removing the links and joints in the Goldberg 5R linkage that are overlapped with the primary 

Bennett linkage, the rest part will form the syncopated Goldberg 5R linkage. Here, the line 

and dot model is used to simplify the construct process, where the solid lines represent the 

links, the dots are the joints and the dash-lines are the links to be removed. 

  
 

   (a)                                (b) 
 

Fig. 2.3.1 The construction of (a) Goldberg 5R linkage and (b) syncopated Goldberg 5R 
linkage. 

 
 

The geometry conditions of the Goldberg 5R linkage and the syncopated Goldberg 5R 

linkage are 

baa == 3412 , caa +=23 , ca =45 , aa =51 , 

βαα == 3412 , γαα +=23 , γα =45 , αα =51 , 
(2.3.1) 
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cba
γβα sinsinsin

== , )5...,,2,1(0 == iRi ; 

and 

bdaa −== 3412 , caa +=23 , ca =45 , aa =51 , 

βδαα −== 3412 , γαα +=23 , γα =45 , αα =51 , 
(2.3.2a) 

( )
bdcba −
−

===
βδγβα sinsinsinsin

, (2.3.2b) 

2
sin

2
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2
sin

2
sin

2
sin

2
sin

γαδ

γαδ

βγ

βγ

βα

βα

−−

++

=
−

+

−

+

, 
( )

cad +
+

=
γαδ sinsin

, (2.3.2c) 

)5...,,2,1(0 == iRi , (2.3.2d) 

respectively. Goldberg (1943) tried to investigate relationship between these two linkages 

through numerical examples. He found the relationship in Eq. (2.3.2b) in the syncopated 

linkage shown in Fig. 2.3.1(b), from which he concluded that the syncopated Goldberg 5R 

linkage might be resolved into the combination of two Bennett linkages like the Goldberg 5R 

linkage. Later, this conclusion was proved by Baker (1979) that Eq. (2.3.2a) can be derived 

analytically from Eq. (2.3.2b) for any syncopated Goldberg 5R linkages. Therefore, the 

syncopated Goldberg 5R linkage is actually a special case of the Goldberg 5R linkage. 

 

2.3.2 Generalized Goldberg 5R Linkage 

Even the Goldberg 5R linkage is still a very special linkage with two links collinearly 

rigidified, which means that the “kink angle” between these two links is locked to zero. In Fig. 

2.3.2, when the kink angle ε  is locked at different values other than zero, a more generalized 

linkage can be obtained. Offsets will be introduced to corresponding links. This innovative 

method was firstly raised by Goldberg (1943) in a qualitative way. Baker (1983) also studied 
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the generalized case using the screw theory. An in-depth research into the kinematics of the 

generalized Goldberg 5R linkage was made by Wohlhart (1991a). 

 
 

Fig. 2.3.2 The construction of the generalized Goldberg 5R linkage. 
 
 

As shown in Fig. 2.3.2, when ),[ ππε −∈ , the two links α/a  and γ/c  that are locked by 

the kink angle are then replaced by a new link 23. In the meanwhile, offsets 2R  and 3R  will 

be introduced to links 23 and 34 in the thin solid lines, respectively. This generalized linkage 

could also be explained using the link-pair replacement method developed in chapter 5. The 

geometry conditions of the generalized Goldberg 5R linkage are 

3412 aa = , 3412 αα = , 
51

51

45

45

12

12 sinsinsin
aaa
ααα

== , 

5145514523 sinsincoscoscoscos ααεααα −= , 

2
tan)cos(cos

sin
23

5145
12

12
23

ααα
α

+=
aa , 

(2.3.3) 
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0541 === RRR , 
23

5145

12

12
32 cos1

sinsinsin
sin α

ααε
α +

==
aRR . 

 

2.3.3 Myard’s 5R Linkages 

Prior to Goldberg, Myard (1931) also published two types of overconstrained 5R linkages, 

one in a plane-symmetric form and the other in an asymmetric form. It is the plane-symmetric 

Myard linkage that attracts the most attentions, as shown in Fig. 2.3.3. Its geometry 

conditions are listed in Eq. (2.3.4). The configuration of the asymmetric Myard 5R linkage is 

equivalent to the linkage shown in Fig. 2.3.1(a) when ca =  and γα = . 

aaa == 5112 , baa == 4523 , 034 =a , 

ααπα =−= 5112 , 
24123
παα == , απα 234 −= , 

ba
1sin

=
α , 0521 === RRR , 43 RR = . 

(2.3.4) 

 
 

Fig. 2.3.3 The plane-symmetric Myard linkage. 
 
 

However, Myard’s work was mainly focused on the geometric properties of the linkage. 

It is found that the plane-symmetric Myard’s 5R linkage could be interpreted as a special case 

of generalized Goldberg 5R linkage, and the asymmetric Myard’s 5R linkage could be 

identified as a special case of the Goldberg 5R linkage (Baker, 1979). Thus, both of the two 

Myard 5R linkages in fact belong to the Goldberg’s 5R linkages. 
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2.3.4 Extended Myard 5R Linkage 

Recently, an extended Myard 5R linkage was proposed by Chen and You (2008a), in which 

the twists of two Bennett linkages that build this 5R linkage are unnecessary to be 
2
π . The 

geometry conditions of this linkage are listed as follows. 

aaa == 5112 , baa == 4523 , 034 =a , 

ααπα =−= 5112 , βαα == 4523 , απα 234 −= , 

ba
βα sinsin

= , ( )5...,,2,10 == iRi . 

(2.3.5) 

Similar to the plane-symmetric Myard 5R linkage, a pair of equal offsets could be added 

to the extended Myard 5R linkage. Therefore, the geometry conditions of the offsets in Eq. 

(2.3.5) that )5...,,2,1(0 == iRi  could be improved as 43 RR =  and 0521 === RRR . The 

same as Myard’s plane-symmetric 5R linkage, the extended Myard 5R linkage still belongs to 

the Goldberg’s 5R linkages. 

 

2.3.5 Summary 

A more general discussion on the overconstrained five-bar linkage with revolute, prismatic, 

cylindrical and helical pairs was conducted to find all cases of overconstrained five-bar 

mechanisms (Pamidi et al., 1973). However, when the joints are limited to revolute joint only, 

the linkages shown above are the only overconstrained 5R linkages published in literatures 

until now. From the above introduction, there is a clear view that all of the overconstrained 

5R linkages belong to the family of Goldberg’s 5R linkages. Similar to the overconstrained 

4R linkage, there is still only one linkage family in the category of overconstrained 5R 

linkage with revolute joint only, which are the Goldberg’s 5R linkages. 

 



Chapter 2 Review of Overconstrained Linkages and Reconfigurable Mechanisms 

26 

2.4 OVERCONSTRAINED 6R LINKAGES 

There are several overconstrained 6R linkages that have been widely applied to industries for 

a long time. For example, the double-Hooke’s joint linkage is widely used in the automobile 

industry for power transmission, and the Schatz linkage is applied in the design of food 

mixture machine (Baker et al., 1982). Another example is the Sarrus linkage (Sarrus, 1853), 

which is also well applied to the design of deployable structures (Gantes, 1989). A detailed 

study into the kinematics of various overconstrained 6R linkages was done by Dietmaier 

(1995a). A refined list of 28 overconstrained 6R linkages was recently made by Baker (2002). 

Most of these linkages belong to two major linkage families: the family of Bennett-based 

linkages and the family of Bricard linkages. Major linkages in these two families will be 

reviewed in what follows.  

 

2.4.1 Goldberg’s 6R Linkages 

Similar to the Goldberg’s 5R linkages, the Goldberg’s 6R linkages can be summarized as the 

summation of one Goldberg 5R linkage (or its syncopation) with another Bennett linkage, as 

well as the subtraction of it from a primary Bennett linkage. Four types of overconstrained 6R 

linkages were developed by Goldberg (1943), which are the serial Goldberg 6R linkage in Fig. 

2.4.1(a), the syncopated serial Goldberg 6R linkage in Fig. 2.4.1(b), the L-shape Goldberg 6R 

linkage in Fig. 2.4.2(a) and the syncopated L-shape Goldberg 6R linkage in Fig. 2.4.2(b). 

 

As shown in Fig. 2.4.1(a), the serial Goldberg 6R linkage is obtained by three Bennett 

linkages connected in series on a common link β/b . In Fig. 2.4.1(b), its syncopation is the 

subtraction of a serial Goldberg 6R linkage from a primary Bennett linkage with two pairs of 

links, δγα ++++ /dca  and ε/e , in a similar manner as the syncopated Goldberg 5R 

linkage. 
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(a)                                                         (b) 
 

Fig. 2.4.1 The construction of (a) the serial Goldberg 6R linkage and (b) the syncopated serial 
Goldberg 6R linkage. 

 
 

The geometry conditions of the serial Goldberg 6R linkage and the syncopated serial 

Goldberg 6R linkage are 

baa == 3412 , dcaa ++=23 , da =45 , ca =56 , aa =61 , 

βαα == 3412 , δγαα ++=23 , δα =45 , γα =56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi ; 

(2.4.1) 

and 

beaa −== 3412 , dcaa ++=23 , da =45 , ca =56 , aa =61 , 

βεαα −== 3412 , δγαα ++=23 , δα =45 , γα =56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , 
dcae ++
++

=
)sin(sin δγαε , 

(2.4.2) 
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, )6...,,2,1(0 == iRi , 

respectively.  

   
 

(a)                                                                    (b) 
 

Fig. 2.4.2 The construction of (a) the L-shape Goldberg 6R linkage and (b) the syncopated L-
shape Goldberg 6R linkage. 

 
 

In Fig. 2.4.2(a), the L-shape Goldberg 6R linkage is an extension of the Goldberg 5R 

linkage. However, the new Bennett linkage shares another common link α/a  with the 5R 

linkage and is combined in a crossed direction, which forms an L-shape configuration. The 

syncopated L-shape Goldberg 6R linkage is shown in Fig. 2.4.2(b), which is obtained from 

the subtraction of an L-shape Goldberg 6R linkage from a primary Bennett linkage with link 
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εδβ −+−+ /edb  and βε −− /be . The geometry conditions of the L-shape Goldberg 6R 

linkage and the syncopated L-shape Goldberg 6R linkage are 

dba +=12 , caa +=23 , ba =34 , ca =45 , da =56 , aa =61 , 

δβα +=12 , γαα +=23 , βα =34 , γα =45 , δα =56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi ; 

(2.4.3) 

and 

edba −+=12 , caa +=23 , bea −=34 , ca =45 , da =56 , aa =61 , 

εδβα −+=12 , γαα +=23 , βεα −=34 , γα =45 , δα =56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , 
cae +
+

=
)sin(sin γαε , 

2
sin

2
sin

2
sin

2
sin

2
sin

2
sin

γαε

γαε

βγ

βγ

βα

βα

−−

++

=
−

+

⋅
−

+

, )6...,,2,1(0 == iRi , 

(2.4.4) 

respectively.  

 

The same as the Goldberg’s 5R linkages, during the construction of each Goldberg’s 6R 

linkages, the kink angles are all locked to zero. A generalized case of each Goldberg’s 6R 

linkages can be obtained in a similar way as the generalized Goldberg 5R linkage does. It 

should be pointed out that unlike the Goldberg 5R linkage and its syncopation, the Goldberg 

6R linkage and its syncopation are different linkages. 

 

2.4.2 Variants of Goldberg’s 6R Linkages 

By further utilizing Goldberg’s technique in the choice of links to be locked in Goldberg’s 6R 

linkages, two variants of Goldberg’s 6R linkages were published by Baker (1993a).  
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          (a)                                                              (b) 
 

Fig. 2.4.3 The construction of (a) the variant of serial Goldberg 6R linkage and (b) the variant 
of L-shape Goldberg 6R linkage. 

 
 

The first variant is based on the serial Goldberg 6R linkage. As shown in Fig. 2.4.3(a), 

three Bennett linkages with a link β/b  in common are placed in serial for combination. 

Different from the serial Goldberg 6R linkage, one kink angle of link-pair γα /~/ ca  at the 

bottom left and another kink angle of link-pair δγ /~/ dc  at the top right are locked to zeros. 

After removing the superposed links and joints, the variant of serial Goldberg 6R linkage will 

be formed. The second variant is based on the L-shape Goldberg 6R linkage. As shown in Fig. 

2.4.3(b), three Bennett linkages A, B and C are carefully chosen so that the two linkages on 

the left share a common link α/a , and the two linkages at the bottom share a common link 
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β/b . After superposing the three linkages on the common links, one kink angle of link-pair 

δβ /~/ db  on the left and another kink angle of link-pair δγ /~/ dc  on the top right can 

be locked to zeros. Then, removing the superposed links and joints, the variant of L-shape 

Goldberg 6R linkage will be formed. The geometry conditions of the first and second variant 

of Goldberg’s 6R linkages are  

baa == 4512 , caa +=23 , da =34 , dca +=56 , aa =61 , 

βαα == 4512 , γαα +=23 , δα =34 , δγα +=56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi ; 

(2.4.5) 

and 

dba +=12 , aa =23 , ca =34 , ba =45 , dca +=56 , aa =61 , 

δβα +=12 , αα =23 , γα =34 , βα =45 , δγα +=56 , αα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

(2.4.6) 

Both variants of the Goldberg’s 6R linkages can be generalized in a similar way as the 

generalized Goldberg 5R linkage. 

 

2.4.3 Wohlhart’s Double-Goldberg 6R Linkage 

Wohlhart’s method could be viewed as an extension of Goldberg’s technique (Wohlhart, 

1991a). In Fig. 2.4.4, two Goldberg 5R linkages are carefully chosen so that they share the 

identical link-pair γα /~/ ca . The Wohlhart’s double-Goldberg 6R linkage is obtained by 

firstly merging these two Goldberg 5R linkages on the common link-pair γα /~/ ca , and 

then removing it out. A generalized Wohlhart’s double-Goldberg 6R linkage can be 

constructed when the two kink angles are not constrained to be zero. When the kink angle is 

zero, the geometry conditions of the Wohlhart’s double-Goldberg 6R linkage are 
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baa == 3412 , caaa +== 5623 , daa == 6134 , 

βαα == 3412 , γααα +== 5623 , δαα == 6134 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

(2.4.7) 

 
 

Fig. 2.4.4 The construction of the Wohlhart's double-Goldberg 6R linkage. 
 
 

2.4.4 Back-to-back Double-Goldberg 6R Linkage 

In the back-to-back double-Goldberg 6R linkage, the other three links 12, 23 and 34 are 

chosen for connection (Chen and You, 2007). When both Goldberg 5R linkages are identical 

in 2θ  and 3θ , they share the same kinematic paths on these two joints. A 6R linkage can be 

obtained by superposing on link-pair 12-23-34 and then removing the common links and 

joints, as shown in Fig. 2.4.5. The geometry conditions are listed as follows. 
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aaa == 3412 , bdaa −== 5623 , caa == 6145 , 

ααα == 3412 , βδαα −== 5623 , γαα == 6145 , 

dcba
δγβα sinsinsinsin

=== , 
2

tan
2

tan
2

tan
2

tan δβγα
⋅=⋅ ,  

)6...,,2,1(0 == iRi . 

(2.4.8) 

 
 

Fig. 2.4.5 The construction of the back-to-back double-Goldberg 6R linkage. 
 
 

Results shown in section 5.2 demonstrate that this linkage is actually a special case of the 

Wohlhart’s double-Goldberg 6R linkage with a special geometry constraint. A different case 

of the back-to-back double-Goldberg 6R linkage can be obtained by isomerizing link-pair 61-

12 into link-pair 61’-1’2, as shown in Fig. 2.4.6.  



Chapter 2 Review of Overconstrained Linkages and Reconfigurable Mechanisms 

34 

 
 

Fig. 2.4.6 The isomerization between two cases of the back-to-back double Goldberg 6R 
linkage. 

 
 

Different from Wohlhart’s result, a different geometry constraint on the offsets could be 

introduced in the back-to-back double-Goldberg 6R linkage, which is similar to the linkage 

found by Mavroidis and Roth (1995). The patterns of offsets are the same as in Mavroidis 

and Roth’s 6R linkage, which are 

041 == RR , 52 RR = , 63 RR =  for the original case, 

or 041 == RR , 62 RR = , 53 RR =  for the isomerized case. 
(2.4.9) 

 

2.4.5 Waldron’s Hybrid 6R Linkage 

This linkage was proposed by Waldron (1968) which combines a pair of 4-bar linkages and 

only the case of two 4R linkages is useful for us. This linkage could be further degenerated 

into the Goldberg’s 5R linkages (Baker, 1993a). In order to build this hybrid 6R linkage, two 

Bennett linkages are randomly chosen and collinearly placed in such a way that one joint 

from each Bennett linkages shares the same revolute axis in space, as shown in Fig. 2.4.7.  

 

After defining the relative distance e  between the two joints along the common axis and 

locking the two kink angles, 1ε  between the adjacent links δ/b  and δ/d , and 2ε  between 

the adjacent links α/a  and γ/c , to fixed values, a new link could be introduced to replace 



Chapter 2 Review of Overconstrained Linkages and Reconfigurable Mechanisms 

35 

each link-pair with offsets added to the corresponding links. However, the geometry 

conditions of this linkage were not given by Waldron, but later provided by Baker (1993a). 

 

 
 

Fig. 2.4.7 The construction of the Waldron's hybrid 6R linkage. 
 
 
 

2.4.6 Yu & Baker’s Syncopated 6R Linkage 

During the degeneration process from the Waldron’s hybrid 6R linkage into the Goldberg 5R 

linkage, Yu and Baker (1981) noticed a special state of the Waldron’s hybrid 6R linkage 

where syncopation can be formed using Goldberg’s method. In the degeneration process 

shown in Fig. 2.4.8, two Bennett linkages are randomly chosen to be connected.  
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Fig. 2.4.8 The degeneration process from a Waldron's hybrid 6R linkage into a Goldberg 5R 
linkage. 

 
 

They are placed in such a manner that the offset e  along the common revolute axis shrinks to 

zero, the kink angle 1ε  is locked to 0 and another kink angle 2ε  is locked to π . Thus, the two 

links β/b  and δ/d  forming kink angle 1ε  are now overlapped while the other two links 

α/a  and γ/c  forming kink angle 2ε  are now collinearly posed. After firstly removing the 

overlapped part, and then combining the collinearly posed links, a special case of the 

Waldron’s hybrid 6R linkage can be formed. When the two Bennett linkages are carefully 

chosen to share a common link on the overlapped part, or link β/b  is chosen to be the same 

as link δ/d , a Goldberg 5R linkage can be obtained subsequently.  
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Fig. 2.4.9 The construction of the Yu & Baker's syncopated 6R linkage. 
 
 

Following Goldberg’s method of using a Goldberg 5R linkage to form a syncopated 5R 

linkage, Yu and Baker did the same operation to the special case of Waldron’s hybrid 6R 

linkage to find a syncopated 6R linkage in Fig. 2.4.9. This linkage can be degenerated into the 

syncopated Goldberg 5R linkage when link δ/b  shares the same geometry conditions as link 

δ/d . The geometry conditions of the Yu & Baker’s syncopated 6R linkage are 

bea −=12 , caa +=23 , dea −=34 , ca =45 , dba −=56 , aa =61 , 

βεα −=12 , γαα +=23 , δεα −=34 , γα =45 , δβα −=56 , αα =61 , 

dcba
δγβα sinsinsinsin
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(2.4.10) 
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2.4.7 Mavroidis & Roth’s 6R Linkage and Dietmaier’s 6R Linkage 

The methods adopted in finding the above overconstrained 6R linkages are mainly geometry 

based, which only give parts of the solutions to the family of overconstrained 6R linkages. As 

the development in inverse kinematics goes broader and deeper, numerical based methods 

have been developed which utilize the power of computers to find the solutions in a different 

way. Mavroidis, Roth and Dietmaier are the pioneers in utilizing the inverse kinematics 

methods to find new overconstrained 6R linkages. 

 

The linkage found by Mavroidis and Roth (1995) is based on a numerical scheme 

developed by Raghavan and Roth (1990). The purpose of this scheme is to solve the inverse 

kinematics for general 6R manipulators. Any close-loop mechanism can be viewed as a serial 

robot arm with its end-effector attached to its base frame. By solving the inverse kinematics 

of a closed-loop 6R mechanism, an overconstrained 6R linkage was proposed by Mavroidis 

and Roth with the following geometry conditions 

3412 aa = , 5623 aa = , 6145 aa = , 

3412 αα = , 5623 αα = , 6145 αα = , 

61

61

45

45

34

34

12

12 sinsinsinsin
aaaa
αααα

=== , 

041 == RR , 52 RR = , 63 RR =  or 041 == RR , 62 RR = , 53 RR = . 

(2.4.11) 

The geometry conditions in Eq. (2.4.11) share certain similarities to the Wohlhart’s double-

Goldberg 6R linkage in Eq. (2.4.7). In terms of generosity, the geometry conditions in Eq. 

(2.4.11) cover the generalized Wohlhart’s double-Goldberg 6R linkage in the choice of 

lengths and twists on links 23 and 56. On the other hand, there is another case of the 

Mavroidis & Roth’s 6R linkage when the geometry conditions on links 34 and 45 are 

exchanged, which is the same as in the back-to-back double-Goldberg 6R linkage. Even 
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though the Mavroidis & Roth’s 6R linkage is found using numerical method, we can still find 

its correlation with other existing linkages found using construct methods, which is an 

interesting phenomenon that worth attentions. Later, another overconstrained 6R linkage was 

found by Dietmaier (1995b) using the numerical scheme developed by Lee and Liang (1988). 

After trying to solve the same inverse kinematics problem and observing the results, a new 

linkage was proposed with the following geometry conditions. 

61

61

12

12 sinsin
aa
αα

= , 
45

45

34

34 sinsin
aa
αα

= , 5623 aa = , 5623 αα = , 

)cos(cossin)cos(cossin
4534

34

34
6112

12

12 αααααα
+⋅=+⋅

aa , 

51 RR = , 42 RR = , 063 == RR . 

(2.4.12) 

The geometry conditions shown above were summarized by Dietmaier through observation 

of the raw data. In the meanwhile, he claimed that when further constraints are added to Eq. 

(2.4.12) so that 3412 aa = , 6145 aa = , 3412 αα =  and 6145 αα = , the Mavroidis & Roth’s 6R 

linkage could be obtained, apart from the part that offsets are interchangeable in Mavroidis & 

Roth’s 6R linkage. Recently, the mobility of Dietmaier’s linkage is confirmed by Baker 

(2010) using single reciprocal screw method. The discovery of both linkages set a good 

example in the application of inverse kinematics methods in finding new overconstrained 6R 

linkage. Despite the fact that different methods are used, these two linkages indeed share 

some similarities in geometry conditions which worth attentions. 

 

2.4.8 Bricard Linkages 

One of the most fascinating and remarkable linkage families in the overconstrained 6R 

linkages is the family of Bricard linkages (Bricard, 1897; 1927). Review to the Bricard 

linkages was included in section 1.2. There are six cases in the original family, including: 
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(1)  The general line-symmetric case, 

4512 aa = , 5623 aa = , 6134 aa = , 

4512 αα = , 5623 αα = , 6134 αα = , 

41 RR = , 52 RR = , 63 RR = ; 

(2.4.13) 

(2)  The general plane-symmetric case, 

6112 aa = , 5623 aa = , 4534 aa = , 

παα =+ 6112 , παα =+ 5623 , παα =+ 4534 , 

041 == RR , 62 RR = , 53 RR = ; 

(2.4.14) 

(3)  The trihedral case, 

2
61

2
45

2
23

2
56

2
34

2
12 aaaaaa ++=++ , 

2563412
πααα === , 

2614523
πααα −=== ,  

)6...,,2,1(0 == iRi ; 

(2.4.15) 

(4)  The line-symmetric octahedral case, 

0615645342312 ====== aaaaaa , 635241 ,, RRRRRR === ; (2.4.16) 

(5)  The plane-symmetric octahedral case, 

0615645342312 ====== aaaaaa , 

041 =+ RR , )sin(
sin

3412

34
12 αα

α
+

⋅−= RR , )sin(
sin

3412

12
13 αα

α
+

⋅= RR , 

)sin(
sin

6145

61
15 αα

α
+

⋅= RR , )sin(
sin

6145

45
16 αα

α
+

⋅−= RR ; 

(2.4.17) 

(6)  The doubly collapsible octahedral case, 

0615645342312 ====== aaaaaa , 0642531 =⋅⋅+⋅⋅ RRRRRR . (2.4.18) 
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2.4.9 The Revised General Line-symmetric and Plane-symmetric Bricard Linkages 

During the numerical search of new and revised overconstrained linkages, Mavroidis and 

Roth (1995) found additional linkage closures which are similar to the original general line-

symmetric and plane-symmetric Bricard linkages. The geometry conditions of the revised 

general line-symmetric Bricard linkage are  

4512 aa = , 5623 aa = , 6134 aa = , 

4512 αα = , 5623 αα = , 6134 αα = , 

41 RR −= , 52 RR −= , 63 RR −= . 

(2.4.19) 

Note that in this revised case, the offsets on the opposite links are set as negatively equaled, 

which is different from the original case, where the offset on the opposite links are positively 

equaled in Eq. (2.4.13). Further analysis about the differences between the original and 

revised general line-symmetric Bricard linkage is addressed in chapter 4. 

 

In the revised general plane-symmetric Bricard linkage, the geometry conditions are 

6112 aa = , 5623 aa = , 4534 aa = , 

06112 =+αα , 05623 =+αα , 04534 =+αα , 

041 == RR , 62 RR −= , 53 RR −= . 

(2.4.20) 

Note that in this revised case, the twists and offsets are set in a different manner compared to 

Eq. (2.4.14).  

 

2.4.10 Altmann’s 6R Linkage 

A 6R linkage was published by Altmann (1954) and was later identified as a simplified case 

of Bricard’s general line-symmetric 6R linkage. It was studied by Phillips (1984; 1990), and 
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re-examined by Baker (1993b) using the screw system algebra. Its geometry conditions are 

listed as follows. 

4512 aa = , 05623 == aa , 6134 aa = , 

256342312
παααα ==== , 

26145
παα −== , 

)6...,,2,1(0 == iRi . 

(2.4.21) 

 

2.4.11 Wohlhart’s Hybrid 6R Linkage  

It was noticed that in some linkages there exist a transversal line that intersects all revolute 

axes during the linkage’s full-cycle movement. Such characteristic exists in general plane-

symmetric Bricard linkages, trihedral Bricard linkages, Bennett linkage, plane-symmetric 

Myard 5R linkage and double-Hooke’s linkage. Based on this observation, an 

overconstrained 6R linkage was proposed by Wohlhart (1987) with three link-pairs of partial 

symmetry. In Fig. 2.4.10, the three link-pairs with partial symmetry are 61-12, 23-34 and 45-

56.  

 
 

Fig. 2.4.10 The Wohlhart's 6R linkage with partial symmetry and a transversal axis in 
common. 

 
 

The geometry conditions of Wohlhart’s hybrid 6R linkage are  
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2312 aa = , 4534 aa = , 6156 aa = , 

2312 αα −= , 4534 αα −= , 6156 αα −= , 

0642531 =++=== RRRRRR . 

(2.4.22) 

 

2.4.12 Summary 

The purpose of this review is not meant to include all the linkages in the category of 

overconstrained 6R linkages, but to review the major linkages in this category and summarize 

the historical relationship among them. The reader is encouraged to refer to the work by 

Dietmaier (1995a) for a detailed study into the kinematics of various overconstrained 6R 

linkages and Baker (2002) for a refined list of 28 overconstrained 6R linkages that have been 

published in literatures. The overconstrained 6R linkages could not be easily classified into a 

single linkage family like the overconstrained 5R and 4R linkages. Among them, two major 

linkage families could be generalized, which are the Bennett-based linkage family and the 

Bricard linkage family. Linkages in the Bennett-based linkage family are constructed from 

the combination and subtraction from the basic linkages, such as the Bennett linkage and the 

Goldberg linkages. Linkage in the Bricard linkage family makes use of special geometry 

constraint in line-symmetry, plane-symmetry, common transversal and etc. to form 

overconstrained 6R linkages. Even though for linkages like the Mavroidis & Roth’s 6R 

linkage and Dietmaier’s 6R linkage, which were found through inverse kinematics methods, 

they still share similarities in the geometry conditions and spatial configurations with other 

existing linkages in the Bennett-based and Bricard families. 
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2.5 RECONFIGURABLE MECHANISMS 

Recent advance in mechanism design promotes the development of a class of mechanisms 

which are reconfigurable with multiple operation forms. Such reconfigurable mechanisms are 

based on solely one mechanism and are capable of fulfilling multiple tasks in different 

operation forms. A comprehensive review about the current development, principles and 

strategies of the reconfigurable mechanisms was discussed in (Kuo et al., 2009). Several 

mechanisms found in the past two decades exhibit the property of reconfiguration during 

operation. The kinematotropic mechanisms (Wohlhart, 1996) can change its global mobility 

with positional parameter actuations at the bifurcation points. A number of single- and multi-

loop kinematotropic mechanisms are found recently (Galletti and Fanghella, 1999; 2001; 

Galletti and Giannotti, 2002). The metamorphic mechanism (Dai and Rees Jones, 1999) has 

received wide recognition during the past decade, which has variable topology and mobility 

during operation. Theoretical studies in (Dai and Rees Jones, 2005; Lan and Du, 2008; Zhang 

and Dai, 2009b) discussed the topological changes in the metamorphic mechanisms. 

Application of the metamorphic mechanisms can be found in robotics design (Dai and Wang, 

2007), biological modeling (Zhang et al., 2008) and genome reconfigurations (Zhang and Dai, 

2008). Mechanism with variable topologies also draws attentions for its reconfigurable 

potentials (Yan and Kang, 2009; Yan and Kuo, 2006a; 2006b).  

 

This dissertation focuses on the reconfigurable mechanism that is based on the 

transformation among different kinematic paths using kinematic singularities (Kong and 

Huang, 2009; Wohlhart, 1996; 2010), such as kinematotropy mechanism (Wohlhart, 1996) 

and mechanism with bifurcations. The kinematotropy mechanism can change their global 

mobility with positional actuations at the transit positions. Galletti and Fanghella (2001) 

designed a series of kinematotropy mechanisms using the displacement group method. With 
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the group-algebraic approach, Lee and Hervé (2005) found that a closed-loop chain can be 

reconfigured when there are two or more subgroups involved in the mechanism. Another type 

of singularity is applied to design linkages with desired bifurcated paths. Recently, Kong and 

Huang (2009) proposed a number of one degree of freedom single-loop mechanisms with two 

operation modes. Wohlhart (2010) also proposed a series of multifunctional 7R linkages by 

inserting an overconstrained 4R, 5R or 6R mobile chain into a closed-loop 7R linkage.  

 



 

 

Chapter 3   

The Double-Goldberg Linkage Family 

3.1 OVERVIEW 

In this chapter, the double-Goldberg linkage family is presented by using the Goldberg 5R 

linkages or the subtractive Goldberg 5R linkages as the building blocks to construct 

overconstrained 6R linkages. A large number of linkages are covered under this linkage 

family. A family of mixed double-Goldberg 6R linkage is used as an example to explain the 

construct details of this linkage family.  

 

The layout of this chapter is as follows. Section 3.2 reviews the Goldberg 5R linkage and 

the subtractive Goldberg 5R linkage. Two construct methods and all the possible resultant 6R 

linkages are listed in section 3.3. In section 3.4, the six distinct types of the mixed double-

Goldberg linkages are analyzed individually with closure equations. The properties and 

extensions of this new linkage family are discussed in section 3.5, which concludes this 

chapter. 

 

3.2 THE GOLDBERG AND SUBTRACTIVE GOLDBERG 5R LINKAGES  

When superposing two Bennett linkages on a common link α/a  and locking the two 

adjacent links β/b  and γ/c  collinearly as shown in Fig. 3.2.1, a Goldberg 5R linkage can 

be obtained after removing the common link and joints (Baker, 1979; Goldberg, 1943). Its 

geometry conditions and closure equations are reproduced as follows. 



Chapter 3 The Double-Goldberg Linkage Family 

47 

,,,, 51452334125145233412 ααααα +==+== aaaaa  

( );5...,,2,10,sinsinsin

12

12

12

12

12

12 ==== iR
aaa i
ααα

 
(3.2.1) 

and  

,
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2
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2
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2
tan,

2
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2
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2
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2
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1245

12451

3

12511

1251

2

αα

ααθ
θ

ααθ

αα
θ

−

+

=
−

+

=  

., 53241 πθθθπθθ =++=+  

(3.2.2) 

 

  
 

Fig. 3.2.1 The construction of the Goldberg 5R linkage. 
 
 

  

  
 

Fig. 3.2.2 The construction of the subtractive Goldberg 5R linkage. 
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Similarly, with the same two Bennett linkages used in the construction of Goldberg 5R 

linkage, a subtractive Goldberg 5R linkage can be obtained when links β/b  and γ/c  are 

inversely posed as shown in Fig. 3.2.2. The corresponding geometry conditions and closure 

equations are 

3412 aa = , 514523 aaa −= , 3412 αα = , 514523 ααα −= ,  

51

51

45

45

12

12 sinsinsin
aaa
ααα

== , )5...,,2,1(0 == iRi ; 
(3.2.3) 

and 

2
sin

2
tan

2
sin

2
tan

1251

1251

2

ααθ

αα
θ

−
⋅

+

=
1

, 

2
sin

2
sin

2
tan

2
tan

1245

1245

3

αα

ααθ
θ

−

+
⋅

=
1

,  

041 =+θθ , 0532 =++ θθθ . 

(3.2.4) 

respectively. 

 

3.3 THE CONSTRUCT METHODS 

The Bennett ratio is defined to characterize the Bennett linkage as a proportional relationship 

between the sine of twist and length of the link. Four basic links, α/a , β/b , γ/c  and δ/d  

with the same Bennett ratios,  

dcba
δγβα sinsinsinsin

=== , (3.3.1) 

will be used in the following construct methods. There are two construct methods to combine 

two 5R linkages into a 6R linkage. Here, we name a link-pair as two adjacent links connected 

by a shared joint. Wohlhart (1991a) proposed the first construction method when forming his 

double-Goldberg 6R linkage. In detail, two linkages with the identical link-pairs are 

connected together by superposing on this common link-pair as shown in Fig. 3.3.1(a). After 



Chapter 3 The Double-Goldberg Linkage Family 

49 

removing the commonly shared link-pair, the rest part will form a single-loop 

overconstrained linkage. We call such method the common link-pair (CLP). For the second 

construct method, instead of making the identical link-pairs superposed, we can connect them 

into a Bennett linkage, as shown in Fig. 3.3.1(b) in dash lines. Removing this commonly 

shared Bennett linkage will also produce a single-loop overconstrained linkage. And this 

method is called the common Bennett-linkage (CBL). 

  
 

(a)                                                       (b) 
 

Fig. 3.3.1 The methods of (a) common link-pair and (b) common Bennett-linkage.  
 
 

Here, two different 5R linkages will be used as the construct elements of the new linkage 

family, including a subtractive Goldberg 5R linkage S and a Goldberg 5R linkage G. In order 

to form the common link-pair and common Bennett-linkage, linkages S and G both comprise 

of links α/a  and γ/c . When the link-pair γα /~/ ca  is located at different parts of the 5R 

linkage, three possible configurations of the Goldberg 5R linkage can be formed. So does the 

subtractive Goldberg 5R linkage, as listed in Fig. 3.3.2. 
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(a)                                                          (b)  
 

Fig. 3.3.2 The schematics of (a) the subtractive Goldberg 5R linkage S and (b) the Goldberg 
5R linkage G that could be used for connection. 

 
 

As we are going to construct 6R linkage by combining one subtractive Goldberg 5R 

linkage and one Goldberg 5R linkage through common link-pair and common Bennett-

linkage, there are totally 18 ( 233 ××= ) possible combinations. However, after careful 

examination, duplicates are identified and removed. Thus, only six distinct types of linkages 

can be constructed with proposed linkages and methods, which are listed in Table 3.3.1. 
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Table 3.3.1 All possible constructions of the mixed double-Goldberg 6R linkages. 

Type Linkage Construct 
Method Schematics S G 

I S3 G3 CLP&CBL 

 

II 

S3 G1 

CLP&CBL 

 

S3 G2 

S1 G3 

S2 G3 

III 

S1 G1 

CLP 

 
S2 G2 

IV 

S1 G1 

CBL 

 
S2 G2 

V 

S1 G2 

CLP 

 
S2 G1 

VI 

S1 G2 

CBL 

 

S2 G1 
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3.4 SIX TYPES OF MIXED DOUBLE-GOLDBERG 6R LINKAGES 

Because all of the six distinct linkages listed in Table 3.3.1 are built from two different types 

of 5R linkages, we name them as a family of mixed double-Goldberg 6R linkages. To 

simplify the representation, six sets of mathematical relationships are defined as below.  

2
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1 αβ

αβ

−

+

=m , 

2
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2
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2 αγ

αγ

−

+

=m , 

2
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2
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3 αδ

αδ

−

+

=m ,  

2
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2
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4 γδ

γδ

−

+

=m , 

2
sin

2
sin

5 βδ

βδ

−

+

=m , 

2
sin

2
sin

6 γβ

γβ

−

+

=m . 

(3.4.1) 

Here, only Type I linkage is presented with detailed derivation process. The rest linkage types 

can be derived in a similar manner. 

 

3.4.1 Type I 

Linkages S3 and G3 are selected to build the Type I mixed double-Goldberg 6R linkage. As 

shown in Fig. 3.4.1, link-pair 51-45 of linkages S3 and G3 share the same geometry 

conditions so that they can be merged to form a common link-pair connection. After 

removing the connection, a single-loop 6R linkage can be obtained. The geometry conditions 

of linkages S3 and G3 are  

baa == S3
34

S3
12 , caa −=S3

23 , ca =S3
45 , aa =S3

51 , 

βαα == S3
34

S3
12 , γαα −=S3

23 , γα =S3
45 , αα =S3

51 , 

daa == G3
34

G3
12 , caa +=G3

23 , ca =G3
45 , aa =G3

51 , 

δαα == G3
34

G3
12 , γαα +=G3

23 , γα =G3
45 , αα =G3

51 . 

(3.4.2) 
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Fig. 3.4.1 The construction of the Type I mixed double-Goldberg 6R linkage. 
 
 

From Fig. 3.4.1, the geometry conditions of the resultant 6R linkage can be obtained. 

caa −=12 , baa == 6123 , daa == 5634 , caa +=45 , 

γαα −=12 , βαα == 6123 , δαα == 5634 , γαα +=45 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

(3.4.3) 

According to Eqs. (3.2.2) and (3.2.4), the closure equations of linkages S3 and G3 can be 

written as 

2
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tan S3
1

2
S3
2

θ
θ m

−= , 
6

S3
1

S3
3 2

tan

2
tan

m

θ
θ

= , 0S3
4

S3
1 =+θθ , 0S3

5
S3
3

S3
2 =++ θθθ ; (3.4.4) 

and 



Chapter 3 The Double-Goldberg Linkage Family 

54 

2
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tan G3
1
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G3
2

θ
θ m

−= , 
2
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2
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1
4

G3
3 θθ m= , πθθ =+ G3

4
G3

1 , πθθθ =++ G3
5

G3
3

G3
2 , (3.4.5) 

respectively. The compatibility relationship between revolute variables of the resultant 6R 

linkage and linkages S3 and G3 are 

S3
21 θθ = , S3

32 θθ = , πθθθ +−= G3
4

S3
43 ,  

G3
34 2 θπθ −= , G3

25 2 θπθ −= , πθθθ +−= G3
1

S3
13 . 

(3.4.6) 

In addition, the compatibility relationship,  

G3
5

S3
5 θθ = , (3.4.7) 

must be held to build a successful connection. The closure equations of the Type I mixed 

double-Goldberg 6R linkage are derived by substituting Eqs. (3.4.6) and (3.4.7) into Eqs. 

(3.4.4) and (3.4.5) as follows. The kinematic paths of the Type I linkage are plotted in Fig. 

3.4.2.  
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Fig. 3.4.2 The kinematic paths of the Type I mixed double-Goldberg 6R linkage. 
 
 

It should be pointed out that using common Bennett-linkage method with the same 

linkages S3 and G3, the same linkage could be formed in a different configuration. In Fig. 

3.4.2 for example, the hollow dots represent the configuration of the 6R linkage from 

common link-pair method CLP
11 θθ = , and the solid dots represent the configuration from 

common Bennett-linkage method CBL
11 θθ −= , then CBL

1
CLP

1 θθ −= . When we replace linkage 

S3 with Goldberg 5R linkage G3 and follow the same construction as shown above, the 

Wohlhart’s double-Goldberg 6R linkage will be obtained. However, in Wohlhart’s linkage, 

bifurcations are later detected which will transform the linkage into non-constructive forms 

(Song and Chen, 2011); while in the Type I linkage derived above, no bifurcation has been 

found. Therefore, the Type I mixed double-Goldberg 6R linkage could be considered as a 

variant of Wohlhart’s double-Goldberg 6R linkage. 
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3.4.2 Type II 

Linkages S2 and G3 are selected to build the Type II mixed double-Goldberg 6R linkage. As 

shown in Fig. 3.4.3, link-pair 34-45 of linkage S2 and link-pair 51-45 of linkage G3 share the 

same geometry conditions so that they can be merged to form a common link-pair. After 

removing the connection, a single-loop 6R linkage can be obtained. The geometry conditions 

of linkages S2 and G3 are 

aaa == S2
34

S2
12 , cba −=S2

23 , ca =S2
45 , ba =S2

51 , 

ααα == S2
34

S2
12 , γβα −=S2

23 , γα =S2
45 , βα =S2

51 ; 

daa == G3
34

G3
12 , caa +=G3

23 , ca =G3 
45 , aa =G3

51 , 

δαα == G3
34

G3
12 , γαα +=G3

23 , γα =G3
45 , αα =G3

51 . 

(3.4.10) 

 
 

Fig. 3.4.3 The construction of the Type II mixed double-Goldberg 6R linkage. 
 
 

Thus the geometry conditions of the resultant 6R linkage are 

aa =12 , cba −=23 , daa == 5634 , caa +=45 , ba =61 , 

αα =12 , γβα −=23 , δαα == 5634 , γαα +=34 , βα =61 , 

(3.4.11) 
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dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

 
 

Fig. 3.4.4 The kinematic paths of the Type II mixed double-Goldberg 6R linkage. 
 
 

The closure equations of the Type II 6R linkage can be derived as follows and its kinematic 

paths are plotted in Fig. 3.4.4. 
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in which 

( ) ( ) 







−−±−=

2
tan411

2
tan2

1 12
43

2
4343

1
4

θ
θ mmmmmm

m
P . 

 

As shown in Table 3.3.1, the same linkage will be obtained when using the common 

Bennett-linkage method. On the kinematic paths, the linkage obtained from common link-
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pair (hollow dots in Fig. 3.4.4) has a phase delay of π2  when comparing to the linkage 

obtained from common Bennett-linkage (solid dots in Fig. 3.4.4). Due to the similarity of 5R 

linkages, S3+G1, S3+G2 and S1+G3 will also give the same 6R linkages. From the kinematic 

paths, it is interesting to note that 1θ  needs to rotate two full cycles, or variate in the range of 

[ )ππ 2,2− , so that 3θ , 4θ , 5θ  and 6θ  have one full cycle of movement while 2θ  follows with 

two cycles of motion. When the linkage S2 is replaced by Goldberg 5R linkage G2, the Type 

II linkage will be the second variant of Goldberg 6R linkage proposed by Baker (1993a). 

Therefore, the Type II is viewed as a variant of Baker’s second variant of Goldberg 6R 

linkage.  

 

3.4.3 Types III and IV 

Linkages S2 and G2 are selected to build the Types III and IV mixed double-Goldberg 6R 

linkage. Link-pair 34-45 of these two linkages share the same geometry conditions so that 

they can be merged to form a common link-pair. After removing the connection, a Type II 

linkage can be obtained as shown in Fig. 3.4.5. The geometry conditions of linkages S2 and 

G2 are  

aaa == S2
34

S2
12 , cba −=S2

23 , ca =S2
45 , ba =S2

51 , 

ααα == S2
34

S2
12 , γβα −=S2

23 , γα =S2
45 , βα =S2

51 ; 

aaa == G2
34

G2
12 , dca +=G2

23 , ca =G2
45 , da =G2

51 , 

ααα == G2
34

G2
12 , δγα +=G2

23 , γα =G2
45 , δα =G2

51 . 

(3.4.13) 



Chapter 3 The Double-Goldberg Linkage Family 

59 

  
 

Fig. 3.4.5 The construction of the Type III mixed double-Goldberg 6R linkage. 
 
 

From Fig. 3.4.5, the geometry conditions of the Type III linkage can be obtained. 

aaa == 4512 , cba −=23 , dca +=34 , da =56 , ba =61 , 

ααα == 4512 , γβα −=23 , δγα +=34 , δα =56 , βα =61 , 

dcba
δγβα sinsinsinsin

=== ,  

)6...,,2,1(0 == iRi . 

(3.4.14) 

When we change the construction method to the common Bennett-linkage to connect 

linkages S2 and G2, the Type IV linkage will be obtained, see Fig. 3.4.6. Therefore, the 

geometry conditions of the Type IV linkage are 

aaa == 4512 , cba −=23 , da =34 , dca +=56 , ba =61 , 

ααα == 4512 , γβα −=23 , δα =34 , δγα +=56 , βα =61 , 

dcba
δγβα sinsinsinsin

=== ,  

)6...,,2,1(0 == iRi . 

(3.4.15) 
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Fig. 3.4.6 The construction of the Type IV mixed double-Goldberg 6R linkage. 
 
 

The closure equations of Types III and IV mixed double-Goldberg 6R linkages are 

derived as  
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(3.4.16) 

and 
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(3.4.17) 

respectively. Their kinematic paths are plotted in Fig. 3.4.7 and Fig. 3.4.8.  
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Fig. 3.4.7 The kinematic paths of the Type III mixed double-Goldberg 6R linkage. 
 

 
 

Fig. 3.4.8 The kinematic paths of the Type IV mixed double-Goldberg 6R linkage. 
 
 

For Type III linkage, it is obvious that 3θ  is constrained to zero during the full cycle 

movement. The instantaneous mobility of joint 3 is locked to zero for the whole domain. 

Thus, the link-pair 23-34 could be viewed as a composite link 24 of δβ ++ /db . Therefore, 

the Type III is equivalent to a Goldberg 5R linkage. For Type IV linkage, from the construct 
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method and geometry conditions, the Type IV can be considered as a variant of Baker’s first 

variant of Goldberg 6R linkage (Baker, 1993a). As demonstrated in Table 3.3.1, the 

connection between S1 and G1 gives the same 6R linkages. 

 

3.4.4 Types V and VI 

Linkages S2 and G1 are selected to build the Types V and VI mixed double-Goldberg 6R 

linkage. Link-pair 34-45 of linkage S2 and link-pair 51-12 of linkage G1 share the same 

geometry conditions. They can be merged to form a common link-pair connection. After 

removing the connection, a Type V linkage can be obtained in Fig. 3.4.9. The geometry 

conditions of linkages S2 and G1 are  

aaa == S2
34

S2
12 , cba −=S2

23 , ca =S2
45 , ba =S2

51 , 

ααα == S2
34

S2
12 , γβα −=S2

23 , γα =S2
45 , βα =S2

51 ; 

caa == G1
34

G1
12 , daa +=G1

23 , da =G1
45 , aa =G1

51 , 

γαα == G1
34

G1
12 , δαα +=G1

23 , δα =G1
45 , αα =G1

51 . 

(3.4.18) 

 
 
 

Fig. 3.4.9 The construction of the Type V mixed double-Goldberg 6R linkage. 
 
 

Thus, the geometry conditions of the resultant 6R linkage can be obtained. 
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aa =12 , cba −=23 , da =34 , ca =45 , daa +=56 , ba =61 , 

αα =12 , γβα −=23 , δα =34 , γα =45 , δαα +=56 , βα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

(3.4.19) 

Similar to Types III and IV, we can change the connection method to the common Bennett-

linkage to connect linkages S2 and G1 to obtain the Type VI linkage, see Fig. 3.4.10. The 

geometry conditions of the Type VI linkage are 

aa =12 , cba −=23 , daa +=34 , ca =45 , da =56 , ba =61 , 

αα =12 , γβα −=23 , δαα +=34 , γα =45 , δα =56 , βα =61 , 

dcba
δγβα sinsinsinsin

=== , )6...,,2,1(0 == iRi . 

(3.4.20) 

  
 

Fig. 3.4.10 The construction of the Type VI mixed double-Goldberg 6R linkage. 
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The closure equations of Types V and VI mixed double-Goldberg 6R linkages are derived 

as  
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(3.4.22) 

respectively. Their kinematic paths are plotted in Fig. 3.4.11 and Fig. 3.4.12.  

 
 

Fig. 3.4.11 The kinematic paths of the Type V mixed double-Goldberg 6R linkage. 
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Fig. 3.4.12 The kinematic paths of the Type VI mixed double-Goldberg 6R linkage. 
 
 

From the geometry conditions, Type V linkage is in fact a variant of Waldron’s hybrid 6R 

linkage comprising of one Bennett linkage with links α/a  and β/b , and another Bennett 

linkage with links γ/c  and δ/d . And from the geometry conditions shown above, it is 

obvious that the Type VI is related to the L-shape Goldberg 6R linkage (Goldberg, 1943) 

where link 23 is in negative length (Chen and You, 2005; 2008b). Therefore, we can view the 

Type VI as a variant of the L-shape Goldberg 6R linkage.  

 

3.5 SUMMARY 

A new family of mixed double-Goldberg 6R linkages is built from the combination of a 

subtractive Goldberg 5R linkage and a Goldberg 5R linkage through either a common link-

pair or a common Bennett-linkage. The six resultant linkages are summarized in Table 3.5.1. 

All of them have single mobility. Physical model of the Type V linkage is shown in Fig. 3.5.1. 
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Table 3.5.1 The linkage identifications of the mixed double-Goldberg linkage family. 
Type Linkage Identification 

I Variant of the Wohlhart’s double-Goldberg 6R linkage 
II Variant of the Baker’s first variant of Goldberg 6R linkage 
III The Goldberg 5R linkage (equivalent) 
IV Variant of the Baker’s second variant of Goldberg 6R linkage 
V Variant of the Waldron’s hybrid 6R linkage 
VI Variant of the L-shape Goldberg 6R linkage 

 

 
 

  

(a) (b) (c) 
 

Fig. 3.5.1 The motion segments of Type V linkage model. 
 
 

All the linkages in the family of mixed double-Goldberg 6R linkages are built from four 

basic links α/a , β/b , γ/c  and δ/d . After comparing the geometry conditions of each 

linkage type, an extra link γ/c  is identified which plays a different role when comparing to 

the other three links α/a , β/b  and δ/d . In the Types V and VI linkages, link γ/c  is one 

of the six individual links in the linkage; while in Types I, II, III and IV linkages, link γ/c  is 

not directly existed in the linkage but hidden in links such as γα ++ /ca  or γβ −− /cb . In 

order to identify this extra link, we can shrink the geometry conditions of the link to zeros. 

When link γ/c  is shrunk to none, all the linkages above will preserve a similar configuration 

as before. Take Type I linkage in Eq. (3.4.3) for example, when γ/c  is shrunk to none, links 

12 and 45 will be link α/a  at the same time. In this case, Type I linkage could be identified 

as a Mavroidis & Roth’s 6R linkage with zero offsets instead of a variant of Wohlhart’s 

double-Goldberg 6R linkage. Similar observations could be made in other linkage types. 
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Here, two different types of 5R linkages are used to build a family of mixed double-

Goldberg 6R linkages. As shown in Table 3.5.1, all linkages derived above belong to the 

Bennett-based overconstrained linkage family. Through the use of common Bennett-linkage 

and common link-pair between different 5R linkages, the relationship among a number of 

Bennett-based overconstrained linkages has been revealed. Alternatively, we can change our 

construction elements into two Goldberg 5R linkages or two subtractive Goldberg 5R 

linkages. All possible linkages constructed from two 5R linkages through either common 

link-pair or common Bennett-linkage are listed in Table 3.5.2 and Table 3.5.3. 

Table 3.5.2 The linkages in the double-Goldberg linkage family. 

Double-Goldberg 
linkage family 

Wohlhart’s Double-
Goldberg linkage 

family (WDG) 

Mixed Double-
Goldberg linkage 

family (MDG) 

Double-Subtractive-
Goldberg linkage 

family (DSG) 

Construct unit 
2 Goldberg 5R 

linkages 

1 Goldberg 5R 
linkage  

and  
1 subtractive-

Goldberg 5R linkage 

2 subtractive-
Goldberg 5R linkages 

Link-pair for 
connection 

• Link-pairs 51-12 and 12-51 
• Link-pairs 34-45 and 45-34 
• Link-pairs 45-51 and 51-45 

 

Construct method 
• Common link-pair method (CLP) 
• Common Bennett-linkage method (CBL) 

Resultant linkage 
case 

The original cases The variational cases The subtractive cases 

Resultant linkage 
type 

• Type I: the Wohlhart’s double-Goldberg 6R linkage 
• Type II: the Baker’s second variant of Goldberg 6R linkage 
• Type III: the (subtractive) Goldberg 5R linkage 
• Type IV: the Baker’s first variant of Goldberg 6R linkage 
• Type V: the Waldron’s hybrid 6R linkage 
• Type VI: the L-shape Goldberg 6R linkage 
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Table 3.5.3 The complete families of the double-Goldberg 6R linkages. 

Type 
Wohlhart’s Double-

Goldberg linkage family 
(WDG) 

Mixed Double-Goldberg 
linkage family  

(MDG) 

Double-Subtractive-
Goldberg linkage family 

(DSG)  

I 

Three cases of the Wohlhart’s double-Goldberg 6R linkages 

 
  

II 

Three cases of the Baker’s second variant of Goldberg 6R linkages 

   

III 

Three cases of the (subtractive) Goldberg 5R linkages 

   

IV 

Three cases of the Baker’s first variant of Goldberg 6R linkages 

   

V 

Three cases of the Waldron’s hybrid 6R linkages 

   

VI 

Three cases of the L-shape Goldberg 6R linkages 
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Chapter 4   

The General Line-symmetric Bricard Linkage 

4.1 OVERVIEW 

Although the closure equations of the original general line-symmetric Bricard linkage have 

been provided by Baker (1980) in implicit form, it requires further study into its kinematics 

for a better understanding about the linkage. The numerical work by Mavroidis and Roth 

(1995) reported a revised general line-symmetric Bricard linkage with negatively equaled 

offsets on the opposite joints, whose revolute variables are also negatively equaled. In this 

chapter, we study the kinematics of the general line-symmetric Bricard linkage and explore 

the relationship between the original and revised general line-symmetric Bricard linkages. 

Results in this chapter motivate the design of multiple operation forms for the general line-

symmetric Bricard linkage in chapter 5.  

 

The layout of this chapter is as follows. Derivations of the explicit closure equations of 

the original and revised general line-symmetric Bricard linkages are included in sections 4.2 

and 4.3. Discussions about the relationship between the original and revised linkages, 

relationship between the general line-symmetric Bricard linkage and octahedral Bricard 

linkage and the bifurcation behavior of the line-symmetric Bricard without zero offsets are 

included in section 4.4. Final remarks are drawn in section 4.5, which concludes the chapter. 
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4.2 THE EXPLICIT CLOSURE EQUATIONS OF THE ORIGINAL GENERAL 

LINE-SYMMETRIC BRICARD LINKAGE 

The geometry conditions of the original general line-symmetric Bricard linkage are 

4512 aa = , 5623 aa = , 6134 aa = , 

4512 αα = , 5623 αα = , 6134 αα = , 

41 RR = , 52 RR = , 63 RR = . 

(4.2.1) 

Due to the line-symmetric geometry, the revolute variables of the original general line-

symmetric Bricard linkage are positively equaled on the opposite joints 31 θθ = , 42 θθ =  and 

63 θθ =  (Baker, 1980). The simplified geometry conditions of the original general line-

symmetric Bricard linkage are 

( ) ( )( )431 +++ = iiii aa , ( ) ( )( )431 +++ = iiii αα , ( )3+= ii RR  ( )3,2,1=i . (4.2.2) 

Note that to ensure this is a closed-loop 6R mechanism, the subscripts must be the remainder 

of 6 in positive numbers. The closure condition is 

ITTT =612312  , (4.2.3) 

which could be generalized into the following form. 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
1

43
1

54
1
532211

−
++

−
++

−
++++++ = iiiiiiiiiiii TTTTTT . (4.2.4) 

In the transformation matrix in Eq. (2.1.1), the angular parameters, including twist and 

revolute variable, are stored in both rotational matrix 33×Ro  and translational vector 13×Tr . 

The length parameters, including link length and offset, are stored only in the translational 

vector 13×Tr . Therefore, we may firstly use the rotational matrix 33×Ro  only to derive the 

relationship among the angular parameters, and then introduce the length parameters using 

the translational vector 13×Tr  to derive the explicit closure equations. Here, entry (1, 1) in Eq. 

(4.2.4) is extracted and reformed as follows. 
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( )
( ) ( )

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) .0coscossincossinsincossin
sinsinsinsinsinsin

cossinsincossinsincos
coscossinsincossinsin

coscoscoscoscoscos

21154321

211532

2154321

154321

54321

=−−

−+

−−

−−
−

++++++++

++++++

+++++++

++++++

+++++

iiiiiiiiii

iiiiiiii

iiiiiiii

iiiiiiii

iiiiii

ααθθθθθθ

ααθθθθ

αθθθθθθ

αθθθθθθ
θθθθθθ  

(4.2.5) 

Eq. (4.2.5) always holds no matter what the values of twist angles are. Thus, one non-trivial 

solution is when the items in every bracket of Eq. (4.2.5) are zeros, i.e. 

0coscoscoscoscoscos 54321 =− +++++ iiiiii θθθθθθ , (4.2.6a) 

0cossinsincossinsin 54321 =− +++++ iiiiii θθθθθθ , (4.2.6b) 

0sinsincossinsincos 54321 =− +++++ iiiiii θθθθθθ , (4.2.6c) 

0sinsinsinsin 532 =− +++ iiii θθθθ , (4.2.6d) 

0sincossinsincossin 54321 =− +++++ iiiiii θθθθθθ . (4.2.6e) 

Substituting Eq. (4.2.6d) into Eq. (4.2.6e) gives 

41 coscos ++ = ii θθ . (4.2.7) 

From Eq. (4.2.6d), we have 

2

5

3

i

sin
sin

sin
sin

+

+

+

=
i

i

i θ
θ

θ
θ

. (4.2.8) 

By substituting 3,2,1=i  into Eqs. (4.2.7) and (4.2.8), we have 

52 coscos θθ = , 63 coscos θθ = , 14 coscos θθ = , (4.2.9) 

and 

2

5

3

6

4

1

sin
sin

sin
sin

sin
sin

θ
θ

θ
θ

θ
θ

== . (4.2.10) 

Considering the domain of definition that ),[ ππθ −∈i  and Eqs. (4.2.6a)-(4.2.6c), the 

following relationships can be concluded as the solutions to Eqs. (4.2.9) and (4.2.10). 
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positive relationship, 3+= ii θθ ; (4.2.11a) 

and negative relationship, 3+−= ii θθ . (4.2.11b) 

In the above process, entry (1, 1) of Eq. (4.2.4) is selected for the derivation of the 

relationships shown in Eq. (4.2.11). Alternatively, we can also use entries (2, 2) and (3, 3) in 

Eq. (4.2.4) to derive the same relationships in Eq. (4.2.11). Note that these entries are all 

located in the rotational matrix, which contains only the rotational information during 

coordinate transformation of the links and joints. Then, one can consider link length and 

offset located in the translational vector to derive the closure equations in explicit forms. 

Among the simplified expressions of the translational vectors shown in Eq. (4.2.12), it is 

clear that entry (3, 4) consists of the least unknown variables. 

( ) 0,,,, 5421)4,1( =++++ iiiii θθθθθT , (4.2.12a) 

( ) 0,,,, 5421)4,2( =++++ iiiii θθθθθT , (4.2.12b) 

( ) 0,,, 5421)4,3( =++++ iiii θθθθT . (4.2.12c) 

 

By substituting the relationship in Eq. (4.2.11) into Eq. (4.2.12c), for different subscript 

numbers, we have that 

• when 1=i , the relationship between 2θ  and 3θ  can be derived; 

• when 2=i , the relationship between 1θ  and 3θ  can be derived;  

• when 3=i , the relationship between 1θ  and 2θ  can be derived. 

To derive the closure equations, 1θ  is taken as the input. Then, only the relationship between 

1θ  and 3,2θ  will be obtained in the following process. Together with Eq. (4.2.11), the 

complete set of closure equations for the original general line-symmetric Bricard linkage will 

be obtained in explicit forms. 
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4.2.1 Positive Relationship: 3+= ii θθ  

Firstly, we consider the case of positive relationship in Eq. (4.2.11a) that 3+= ii θθ , where the 

revolute variables follow the property of line-symmetry. When 3=i , substituting Eq. 

(4.2.11a) into Eq. (4.2.12c) gives 

( )
( )
( )
( )

( )
( )

( ) ( )
( ) .0coscoscos1

coscoscoscoscoscos
coscossinsincos

sincossinsincos
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+

ααα
αααααα

θθααα
θθααα
θθααα

θθαα
θααααα

θααα
θααααα
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R
RR
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RR
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 (4.2.13) 

The above equation can be simplified as 

,0coscossincoscossinsinsin
cossincossin

2212212212212

22221212

=+++++
+++

LHGFE
DCBA

θθθθθθθθ
θθθθ

 (4.2.14) 

in which  

( )
( )
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( )

( ) ( )
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
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
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


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
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3423123
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23343412232

34232312342
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αα
ααααα
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R
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RRD

aaC
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(4.2.15) 

After tangent half-angle substitution of 2sinθ  and 2cosθ , Eq. (4.2.14) can be rewritten into 



Chapter 4 The General Line-symmetric Bricard Linkage 

74 

( ) ( )[ ]

( )

( ) ( )[ ] .0cossincossin
2

tancossin2

2
tancossincossin

1212221212

2
12122

22
1212221212

=++++++

+++

++−++

θθθθ

θθθ

θθθθθ

HFDLBA

GEC

HFDLBA  

(4.2.16) 

Again, Eq. (4.2.16) can be simplified as 

0
2

tan
2

tan 2
2

2
22

2 =+⋅+⋅ CtermBtermAterm θθ , (4.2.17) 

in which 1θ  is represented in 

( ) ( )
( )
( ) ( )








+++++=
++=

++−++=

.cossincossin
cossin2

cossincossin

12122212122

121222

12122212122

θθθθ
θθ

θθθθ

HFDLBACterm
GECBterm

HFDLBAAterm  

(4.2.18) 

Solutions to Eq. (4.2.17) are 

2

22
2
222

2
4

2
tan

Aterm
CtermAtermBtermBterm ⋅−±−

=
θ , (4.2.19) 

in which all symbols are defined in Eqs. (4.2.15) and (4.2.18). The explicit relationship 

between 1θ  and 2θ  is therefore obtained. Similarly, by analyzing the case when 2=i , the 

relationship between 1θ  and 3θ  can be derived as 

3

33
2
333

2
4

2
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Aterm
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=
θ , (4.2.20) 

where 
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and 
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 (4.2.22) 

 

Because not all entries in the transformation matrix are used in the derivation process, the 

above results only demonstrate the necessary conditions for the closure relationship among 

the revolute variables. To ensure the closure, Eqs. (4.2.11a), (4.2.19) and (4.2.20) have been 

substituted back into the transformation matrix to check whether Eq. (4.2.3) is held for the 

geometry conditions. In such a way, two sets of closure equations are concluded to achieve 

different linkage closures as follows. 
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, (4.2.23) 

and 



Chapter 4 The General Line-symmetric Bricard Linkage 

76 




















=
=
=













 ⋅−+−
=













 ⋅−−−
=

−

−

36

25

14

3

33
2
331

3

2

22
2
221

2

2
4

tan2

2
4

tan2

θθ
θθ
θθ

θ

θ

Aterm
CtermAtermBtermBterm

Aterm
CtermAtermBtermBterm

. (4.2.24) 

 

Results in Eqs. (4.2.23) and (4.2.24) indicate that there are two distinct forms of the 

original general line-symmetric Bricard linkage, both with the property of line-symmetry, 

named as Form I linkage and Form II linkage, respectively. Their kinematic paths are plotted 

in Fig. 4.2.1 and Fig. 4.2.2. Their spatial configurations are illustrated in Fig. 4.2.3 and Fig. 

4.2.4, in which the lines of symmetry are identified as the central lines in front views and 

dash cycles in top views. The geometry conditions of the original general line-symmetric 

Bricard linkage are set as follows.  

5000.1,9000.2,4000.2 613456234512 ====== aaaaaa ; (4.2.25a) 

180/130,180/80,180/40 613456234512 πααπααπαα ====== ; (4.2.25b) 

4200.0,5500.0,5000.0 635241 ====== RRRRRR . (4.2.25c) 

 
 

Fig. 4.2.1 The kinematic paths of the original Form I general line-symmetric Bricard linkage. 
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Fig. 4.2.2 The kinematic paths of the original Form II general line-symmetric Bricard linkage. 
 

 
 

Fig. 4.2.3 The spatial configuration of the original Form I general line-symmetric Bricard 
linkage when 180/0000.60I

1 πθ =  
 

 
 

Fig. 4.2.4 The spatial configuration of the original Form II general line-symmetric Bricard 
linkage when 180/0000.60II

1 πθ = . 
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The singularity behaviors of these two linkage forms are examined with the Singular 

Value Decomposition method (Gan and Pellegrino, 2006; Pellegrino, 1993), which is 

reviewed in the Appendix A. It is found that these two kinematic paths are solely existed 

without any bifurcation points. As shown in Fig. 4.2.5, these two linkage forms are 

independent with no common configurations under the same geometry conditions.  

   
 

     (a)                                                                  (b)  
  

Fig. 4.2.5 The SVD results of the original general line-symmetric Bricard linkages: (a) Form 
I linkage; (b) Form II linkage. 

 
 
 

4.2.2 Negative Relationship: 3+−= ii θθ  

For the case of negative relationship, the revolute variables do not follow the line-symmetry 

property. We can follow the same procedure as the positive relationship to derive the closure 

equations. However, when substituting the results into the transformation matrix, the closure 

condition in Eq. (4.2.3) is not held. Thus, no linkage closure could be achieved with 

3+−= ii θθ , which means that the negative relationship of 3+−= ii θθ  is just a trivial 

relationship for the original general line-symmetric Bricard linkage. 
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4.3 THE EXPLICIT CLOSURE EQUATIONS OF THE REVISED GENERAL LINE-

SYMMETRIC BRICARD LINKAGE 

Besides the original case, a numerical search of new and revised overconstrained linkages 

was conducted in (Mavroidis and Roth, 1995), where a revised closure of the general line-

symmetric Bricard linkage was found with negatively equaled offsets on the opposite joints 

as below. 

4512 aa ′=′ , 5623 aa ′=′ , 6134 aa ′=′ , 

4512 αα ′=′ , 5623 αα ′=′ , 6134 αα ′=′ , 

41 RR ′−=′ , 52 RR ′−=′ , 63 RR ′−=′ . 

(4.3.1) 

The simplified geometry conditions of the revised general line-symmetric Bricard linkage are 

( ) ( )( )431 +++ ′=′ iiii aa , ( ) ( )( )431 +++ ′=′ iiii αα , ( )3+′−=′ ii RR  ( )3,2,1=i . (4.3.2) 

On the geometry conditions, the only difference between the original and revised linkages is 

the offsets. Similar as the process in section 4.2, where entry (1, 1) is in the rotational matrix, 

Eq. (4.2.5) applies for both the original and revised linkages. Therefore, Eq. (4.2.11) can be 

obtained for the revised general line-symmetric Bricard linkage as well.  

 

4.3.1 Positive Relationship: 3+′=′ ii θθ  

For the case of positive relationship, the revolute variables follow the line-symmetry property. 

We can follow the same procedure as section 4.2.1 to derive the closure equations. However, 

when substituting the results back into the transformation matrix, the closure condition in Eq. 

(4.2.3) is not held. Thus, no linkage closure could be achieved with 3+′=′ ii θθ , which means 

the positive relationship of 3+′=′ ii θθ  is just a trivial relationship for the revised general line-

symmetric Bricard linkage. 
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4.3.2 Negative Relationship: 3+′−=′ ii θθ  

For the case of negative relationship, the same procedure could be carried out to derive the 

explicit closure equations. As a result, the following two sets of closure equations are 

concluded to produce two different linkage closures, which are called the Form I ′  and Form 

II ′  of the revised general line-symmetric Bricard linkages. 
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and 
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where 
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and 
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(4.3.8) 

 

The following geometry conditions are used to plot the kinematic paths in Fig. 4.3.1 and 

Fig. 4.3.2 using Eqs. (4.3.3) and (4.3.4), respectively. The spatial configurations of these two 

linkage closures are plotted in Fig. 4.3.3 and Fig. 4.3.4, respectively. Note that the twists on 

links 34 and 61 in Eq. (4.2.25) differ from the twists on links 43 ′′  and 16 ′′  in Eq. (4.3.9) by 

π . And the offsets are negatively equaled in Eq. (4.3.9c). 
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50.1,90.2,40.2 613456234512 =′=′=′=′=′=′ aaaaaa ; (4.3.9a) 

180/50,180/80,180/40 613456234512 πααπααπαα −=′=′=′=′=′=′ ; (4.3.9b) 

42.0,55.0,50.0 635241 =′−=′=′−=′=′−=′ RRRRRR . (4.3.9c) 

 

 
 

Fig. 4.3.1 The kinematic paths of the revised Form I′  general line-symmetric Bricard linkage. 
 
 

 
 

Fig. 4.3.2 The kinematic paths of the revised Form II ′  general line-symmetric Bricard 
linkage. 
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Fig. 4.3.3 The spatial configuration of the revised Form I′  general line-symmetric Bricard 
linkage when 180/0000.60I

1 πθ =′  
 
 

 
 

Fig. 4.3.4 The spatial configuration of the revised Form II ′  general line-symmetric Bricard 
linkage when 180/0000.60II

1 πθ =′ . 
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4.4 DISCUSSIONS 

4.4.1 Relationship between the Original and Revised General Line-symmetric Bricard 

Linkages 

By comparing the explicit closure equations of the original general line-symmetric Bricard 

linkage in Eqs. (4.2.23) and (4.2.24) with the revised general line-symmetric Bricard 

linkage’s in Eqs. (4.3.3) and (4.3.4), it can be found that when  

45451212 aaaa ′==′= , 56562323 aaaa ′==′= , 61613434 aaaa ′==′= , 

45451212 αααα ′==′= , 56562323 αααα ′==′= , πααπαα ±′==±′= 61613434 , 

4411 RRRR ′−==′= , 5522 RRRR ′−==′= , 6633 RRRR ′−==′= , 

(4.4.1) 

we will have 

,,,,,, 665544332211 θθθθθθθθθθθθ ′−=′−=′−=′=′=′=  (4.4.2) 

for both linkage forms, which has been confirmed by the kinematic paths in Fig. 4.2.1, Fig. 

4.2.2, Fig. 4.3.1 and Fig. 4.3.2. Even though the geometry conditions and revolute variables 

in the revised general line-symmetric Bricard linkage are not line-symmetric, the spatial 

configurations of the resultant linkages in Fig. 4.3.3 and Fig. 4.3.4 are still in a line-

symmetric manner. In fact, with the geometric parameters in Eqs. (4.2.25) and (4.3.9) which 

satisfies Eq. (4.4.1), the spatial configurations of the revised Forms I′  and II ′  linkages in Fig. 

4.3.3 and Fig. 4.3.4 are the same as the original Forms I and II linkages’ in Fig. 4.2.3 and Fig. 

4.2.4. 

 

Take the Form I of the original and revised general line-symmetric Bricard linkages for 

example, the joints 4, 5, 6 in Fig. 4.4.1(a) and (b) are in opposite directions due to 

πααπαα ±′==±′= 61613434 . As a result, 665544 ,, θθθθθθ ′−=′−=′−= . The same analysis 

could be carried out for the relationship between the Form II original and revised linkages. 
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The original and revised linkages are actually equivalent to each other with different setups 

on joint axis directions. 

 
 

(a)  
 

 
 

   (b)  
 

Fig. 4.4.1 The illustrations of the general line-symmetric Bricard linkage: (a) the original 
Form I linkage; (b) the revised Form I′  linkage. 

 
 

4.4.2 Relationship with the General Line-symmetric Octahedral Bricard Linkage 

For the general line-symmetric octahedral Bricard linkage as a special case of the general 

line-symmetric Bricard linkage, we can substitute ( ) 01 =+iia  ( )6...,,2,1=i  into the two sets 

of closure equations of the general line-symmetric Bricard linkage to give the closure 

equations of the line-symmetric octahedral Bricard linkage. As shown in Fig. 4.4.2, it is 

found that the closure equations of each linkage form can only produce half of the kinematic 

paths in the line-symmetric octahedral Bricard linkage, which can be joined together to form 

a full-cycle movement at points IP  and IIP . When the revolute variables are in negative 

relationship, no closure can be achieved for the line-symmetric octahedral Bricard linkage. 

The results in Fig. 4.4.2 comply with previous results in (Chai and Chen, 2010; Lee, 1996). 
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Fig. 4.4.2 The kinematic paths of the line-symmetric octahedral Bricard linkage, where the 
geometry conditions are the same as Eq. (4.2.25) with ( ) 01 =+iia . The black solid line is from 
the closure equations of the Form I linkage; the grey solid line is from those of the Form II 

linkage. 
 
 

4.4.3 Special Case of the Line-symmetric Bricard Linkage with Zero Offsets 

One case of special interests is the linkage with all zero offsets in Eqs. (4.2.2) and (4.3.2), 

whose closure equations can be obtained by substituting )6...,,2,1(0 == iRi  into the closure 

equations derived above. The geometry conditions of the resultant linkages become 

( ) ( )( )431 +++ = iiii aa , ( ) ( )( )431 +++ = iiii αα , )6...,,2,1(0 == iRi . (4.4.3) 

In this case, the original and revised general line-symmetric Bricard linkages have the same 

geometry conditions as Eq. (4.4.3). The kinematic paths of the Forms I and II of the original 

and revised line-symmetric Bricard linkages are plotted in Fig. 4.4.3~Fig. 4.4.6, where the 

parameters are the same as Eq. (4.2.25) with 0=iR . From the conclusion in section 4.4.1, the 

revised linkages in Fig. 4.4.5 and Fig. 4.4.6 are equivalent to another original linkage with 

180/506134 παα −== . 
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Fig. 4.4.3 The kinematic paths of the original Form I line-symmetric Bricard linkage with 
zero offset. 

 

 
 

Fig. 4.4.4 The kinematic paths of the original Form II line-symmetric Bricard linkage with 
zero offset. 

 

 
 

Fig. 4.4.5 The kinematic paths of the revised Form I′  line-symmetric Bricard linkage with 
zero offset. 
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Fig. 4.4.6 The kinematic paths of the revised Form II ′  line-symmetric Bricard linkage with 
zero offset. 

 

 
 

Fig. 4.4.7 The transformation among the four forms of the line-symmetric Bricard 6R linkage 
with zero offsets. The black and grey solid lines are the original Forms I and II line-

symmetric Bricard linkages; while the black and grey dash lines are the revised Forms I′  and 
II ′  line-symmetric Bricard linkages. 

 
 

From the above kinematic paths, certain common configurations of the linkage are found 

which enable bifurcations between the original and revised linkage forms. As shown in Fig. 

4.4.7, bifurcation points IB , IIB , IIIB  and IVB , are identified on the kinematic paths of these 
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four linkage forms. The relationship between 1θ  and 5θ  is used in Fig. 4.4.7 to demonstrate 

the transformation among different linkage forms.  

 

As shown in Fig. 4.4.7, when the original Form I linkage in black solid line moves to 

01 =θ  at IB , it can bifurcate into the kinematic paths of revised Form I′  linkage in black 

dash line. Then, when the revised Form I′  linkage in black dash line moves to πθ =1  at IIB , 

it can bifurcate into the kinematic paths of original Form II linkage in grey solid lines. When 

the original Form II linkage in grey solid lines moves to 01 =θ  at IIIB , it can bifurcate into 

the kinematic paths of revised Form II ′  linkage in grey dash lines. Finally, when the revised 

Form II ′  linkage in grey dash lines moves to πθ −=1  at IVB , it can bifurcate back to the 

kinematic paths of original Form I linkage in black solid lines. As a result, a full map of 

bifurcation among these four linkage forms with the identical geometry conditions is obtained. 

Such bifurcation behavior in the line-symmetric Bricard linkage without offsets makes it a 

good source of design for reconfigurable mechanisms. 

 

4.5 SUMMARY 

In this chapter, the kinematics of the general line-symmetric Bricard linkage is investigated 

through the algebraic derivation of its explicit closure equations. It is found that there are two 

independent linkage forms of the original general line-symmetric Bricard linkage, which are 

called the Form I linkage and Form II linkage under the same geometry conditions. A revised 

general line-symmetric Bricard linkage is also investigated with negatively equaled offsets on 

the opposite joints. Further analysis shows that the original and revised linkages are 

equivalent with different setups on the joint axis directions. The closure equations of the 

general line-symmetric Bricard linkage could also be used to analyze the line-symmetric 
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octahedral Bricard linkage, whose link lengths are zeros. The result for the line-symmetric 

octahedral Bricard linkage comply with the result in (Chai and Chen, 2010; Lee, 1996), 

which verifies that the line-symmetric octahedral Bricard linkage is a special case of the 

general line-symmetric Bricard linkage. Investigations are made to the line-symmetric 

Bricard linkage with zero offsets. Since there are no offsets, the geometry conditions of the 

original and revised linkages become identical. When substituted with the same geometry 

conditions, these four linkage forms, two forms from the original linkage closure and two 

forms from the revised linkage closure, could transform into each other through bifurcation 

points. Such bifurcation behavior makes this linkage a good source of design for 

reconfigurable mechanism. In fact, this property explains the multiple forms and bifurcation 

behaviors of the Wohlhart’s double-Goldberg 6R linkage and the double-subtractive-

Goldberg 6R linkages (Song and Chen, 2011; Wohlhart, 1991a), which can be isomerized 

into a line-symmetric Bricard linkage with zero offsets (Wohlhart, 1991b). The results found 

here provide an in-depth understanding to the kinematics of the general line-symmetric 

Bricard linkage, which will be used in chapter 5 for the design of general line-symmetric 

Bricard linkage with multiple operation forms. 



 

91 

Chapter 5   

Reconfigurable Mechanism Design 

5.1 OVERVIEW 

This chapter explores the possibilities and methodologies to design reconfigurable 

mechanisms based on overconstrained linkages. The layout of this chapter is as follows. 

Section 5.2 focuses on the design of double-Goldberg linkages with multiple operation forms 

using analytical method. Section 5.3 focuses on the design of general line-symmetric Bricard 

linkage with multiple operation forms using construct method. Section 5.4 presents a network 

of Bennett linkages with reconfiguration potentials using generic method.  

  

5.2 MULTIPLE OPERATION FORMS OF THE DOUBLE-GOLDBERG LINKAGES 

5.2.1 Two Cases of Double-Goldberg 6R Linkages  

In the Goldberg 5R linkage  and the subtractive Goldberg 5R linkage shown in Fig. 5.2.1, the 

link-pair γα /~/ ca  in grey color are referred to as the roof-links, which is opposite to the 

composite links γα ++ /ca  or γα −− /ca . The Bennett ratios of links α/a , β/b  and γ/c  

are equal. 

  
(a)  (b)  

Fig. 5.2.1 Two types of 5R linkages: (a) the Goldberg 5R linkage, (b) the subtractive 
Goldberg 5R linkage. 



Chapter 5 Reconfigurable Mechanism Design 

92 

A closed loop overconstrained 6R linkage can be obtained when merging two 5R linkages on 

the common roof-links. The geometry conditions of this 6R linkage are 

caaa ±== 4512 , daa == 6123 , baa == 5634 , 

γααα ±== 4512 , δαα == 6123 , βαα == 5634 , 

dcba
δγβα sinsinsinsin

=== ,  

( )6...,,2,10 == iRi . 

(5.2.1) 

in which, ‘+’ is for Wohlhart’s double-Goldberg 6R linkage (Wohlhart, 1991a) and ‘-’ is for 

the double-subtractive-Goldberg 6R linkage. Recent study found that both linkages have two 

different constructive forms, namely Forms I and II linkages (Song and Chen, 2011), see Fig. 

5.2.2 and Fig. 5.2.3 .  

  
(a)  

 
(b) 

 
Fig. 5.2.2 The constructive forms of the Wohlhart’s double Goldberg 6R linkage: (a) Form I 

linkage; (b) Form II linkage. 
 

 
 

 
 

(a)  
 

(b)  
 

 Fig. 5.2.3 The constructive forms of the double-subtractive-Goldberg 6R linkage: (a) 
Form I linkage; (b) Form II linkage. 
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The closure equations of the Forms I and II Wohlhart’s double-Goldberg 6R linkage are 
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(5.2.2) 

where )6,4,3,1( =imi  were defined in Eq. (3.4.1) and are reproduced as below. 

2
sin

2
sin

1 αβ

αβ

−

+

=m , 

2
sin

2
sin

3 αδ

αδ

−

+

=m , 

2
sin

2
sin

4 γδ

γδ

−

+

=m , 

2
sin

2
sin

6 γβ

γβ

−

+

=m . (5.2.3) 

For Form I linkage,  
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and for Form II linkage, 
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And the closure equations for Forms I and II double-subtractive-Goldberg 6R linkage are 
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and for Form II linkage, 
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Through bifurcation analysis (Song and Chen, 2011), two non-constructive forms are 

detected in both linkages using the Singular Value Decomposition method (Gan and 

Pellegrino, 2006; Pellegrino, 1993), namely the Forms III and IV linkages. All four linkage 

forms can bifurcate into each other through bifurcation points. 

 

5.2.2 Investigations on the Multiple Operation Forms  

Our objective is to achieve a 4R operation form for both double-Goldberg linkages. Generally, 

there are three types of 4R linkages, the planar 4R linkage, the spherical 4R linkage and the 

Bennett linkage. Considering the construction process and geometry conditions in both 

double-Goldberg linkages, it is only possible to achieve the reconfiguration between the 

double-Goldberg linkages and Bennett linkage. Due to the symmetry property of the Bennett 

linkage, only joints 3 and 6 on the double-Goldberg 6R linkage can be selected for possible 

4R linkages with joints 1, 2, 4 and 5. From Eqs. (5.2.2) and (5.2.6), since 63 θθ −=  for both 
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linkages, joints 3 and 6 will be inactive only when 01613 == θθθθ dddd . Here, the double-

subtractive-Goldberg 6R linkage is taken as an example for derivation. Following a similar 

procedure, we can also derive the same result from the closure equations in Wohlhart’s 

double-Goldberg 6R linkage. From Eq. (5.2.6), we setup the condition that 
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The general solution to Eq. (5.2.9) should meet the following condition that 

( ) 0
2

tantantan 1
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1 =+
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− −− CmP θ

 (C  is a constant). (5.2.10) 

Rearranging Eq. (5.2.10) to derive the tangent on both sides of the equation that 
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which can be simplified as 

1
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−
= θ

θ

mP

Pm
C . (5.2.12) 

When substituting Eq. (5.2.7) into Eq. (5.2.12), the square root of the variables in the Eq. 

(5.2.12) makes it too complex to solve for the general solution of C . However, since C  

could be any random constant value that works for all solutions to Eq. (5.2.10), we may 

consider the case when Eq. (5.2.12) is free of 1θ  to meet this condition. One of the simplest 

solutions is when 0tan =C , so that 
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which can be simplified as 
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As 1θ  is a free input in Eq. (5.2.14), the following relationship must hold. 
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Solutions to Eq. (5.2.15) are 
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When substituting Eq. (5.2.3) into Eq. (5.2.16), the following relationship will be obtained. 
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Solution to Eq. (5.2.18) gives that 

βδ = . (5.2.19) 
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When the condition in Eq. (5.2.19) is satisfied, consider the geometry condition that links 

β/b  and δ/d  share the same Bennett ratio of db /sin/sin δβ = , we shall have that links 

β/b  and δ/d  become identical to each other. Therefore, the two subtractive-Goldberg 5R 

linkages forming the double-subtractive-Goldberg 6R linkage also become identical. In this 

case, for the Form II linkage in Fig. 5.2.3(b), links 56 and 61 (and links 23 and 34) will be 

identical to each other. As a result, no loop closure could be formed in the Form II linkage, 

which makes the Eq. (5.2.16) a trivial solution to Eq. (5.2.15). 

 

When substituting Eq. (5.2.3) into Eq. (5.2.17), the following relationship can be obtained. 
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(5.2.20a) 

 

(5.2.20b) 

Take Eq. (5.2.20a) for example, multiplying 
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which can be written into 
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Using the half-angle tangent formulas on Eq. (5.2.23) gives 
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which can be simplified into  
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By using the same method as above, we can also derive Eq. (5.2.25) from the Eq. 

(5.2.20b). Following the above steps, the relationship in Eq. (5.2.25) can be derived from the 

closure equations of the Wohlhart’s double-Goldberg 6R linkage in Eq. (5.2.2). Eq. (5.2.25) 

is a special relationship additional to the geometry conditions of these two types of double-

Goldberg 6R linkages, which is equivalent to 

2
tan

2
tan

2
tan

2
tan

2
tan

2
tan

δβ

δβ

γα

γα

±

±
=

±

±
, (5.2.26) 

i.e., 
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Expanding the left and right hand sides of Eq. (5.2.27) gives 
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From Eq. (5.2.29), we come to the relationship that 
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Multiplying 
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 on both sides of Eq. (5.2.30) gives 
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Note that these double-Goldberg 6R linkages are constructed by four basic links α/a , β/b  , 

γ/c  and δ/d  with the same Bennett ratios that, 

dcba
δγβα sinsinsinsin

=== . (5.2.32) 

By substituting Eq. (5.2.32) into Eq. (5.2.31), we come to the result that 
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(a)                                                                (b)  
 

Fig. 5.2.4 The constructive forms of the double-subtractive-Goldberg 6R linkage with 
multiple operation forms: (a) Form I linkage (constructive 6R form); (b) Form II linkage 

(Bennett 4R form) 
 
 

When introducing Eq. (5.2.25) into the double-subtractive-Goldberg 6R linkage, as shown 

in Fig. 5.2.4(a), the Form I linkage is still a constructive 6R linkage with six movable links 

and joints. However, in the Form II linkage in Fig. 5.2.4(b), the revolute variables on joints 3 

and 6 are constrained to be πθθ =−= 63  and the link-pairs 23-34 and 56-61 become collinear 

in a negatively collinear manner. Consider Eq. (5.2.33) with ‘-’ sign, the closed-loop enclosed 

by joints 1, 2, 4 and 5 can be viewed as a Bennett 4R linkage constructed by link-pair 

γα −− /ca ~ δβ −− /db . Therefore, the operation form of a constructive 6R linkage is 

degenerated into a Bennett 4R linkage. In the following modeling, the geometry conditions 

for the four basic links are as follows. 

180/0000.125,0000.1 πα ==a ; 

180/0000.60,5072.1 πβ ==b ; 

180/1927.14,2993.0 πγ ==c ; 

180/0000.45,8632.0 πδ ==d . 

(5.2.34) 
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Fig. 5.2.5 The bifurcation behavior of the double-subtractive-Goldberg 6R linkage with 
multiple operation forms. (a)-(c) are the motion sequences of the Form I linkage; (d) is the 

bifurcation configuration between Forms I and III linkages; (e)-(g) are the motion sequences 
of Form III linkage; (h) is the bifurcation configuration between Forms III and II linkages; 
(i)-(k) are the motion sequences of the Form II linkage; (l) is the bifurcation configuration 
between Forms II and IV linkages; (m)-(o) are the motion sequences of  Form IV linkage; 

and (p) is the bifurcation configuration between Forms I and IV linkages. 
 
 

By using the SVD method, we can detect the non-constructive Forms III and IV linkages, 

which are still 6R linkages, and plot the transitions of the double-subtractive-Goldberg 6R 

linkage with multiple operation forms in Fig. 5.2.5. The relationship between 1θ  and 5θ  is 

used to demonstrate the bifurcation paths. Different linkage forms can transform into each 

other through bifurcation points IVIII,II,I,B . Note that at the bifurcation points, all six links 

become collinear to each other at configurations (d), (h), (l) and (p) in Fig. 5.2.5. It is proved 

in the Appendix B that between 1θ  and 5θ  we shall have 
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1
2

tan
2

tan 51 =⋅
θθ  or πθθ ±=+ 51 , (5.2.35) 

which makes the curve of the Form I linkage straight lines in Fig. 5.2.5. It is unavoidable to 

have part of the kinematic paths present as a straight line. 

 

When introducing Eq. (5.2.25) to the Wohlhart’s double-Goldberg 6R linkage, in the Form 

I linkage in Fig. 5.2.6(a), the revolute variables on joints 3 and 6 become 063 ==θθ . From 

Eq. (5.2.33) with ‘+’ sign, the loop enclosed by joints 1, 2, 4 and 5 can be viewed as a 

Bennett 4R linkage constructed by link-pair γα ++ /ca ~ δβ ++ /db . The Form II linkage is 

still a constructive 6R linkage as shown in Fig. 5.2.6(b).  

       
 

(a)                                                            (b)  
 

Fig. 5.2.6 The constructive forms of the Wohlhart’s double-Goldberg 6R linkage with 
multiple operation forms: (a) Form I linkage (Bennett 4R form); (b) Form II linkage 

(constructive 6R form) 
 
 

By using SVD method, we can detect the non-constructive Forms III and IV linkages, 

which are still 6R linkages, and plot the transitions of the Wohlhart’s double-Goldberg 6R 

linkage with multiple operation forms in Fig. 5.2.7. Different linkage forms can transform 
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into each other through bifurcation points IVIII,II,I,B . At the bifurcation points, all six links also 

become collinear to each other at configurations (d), (h), (l) and (p) in Fig. 5.2.7. Note that in 

this case, it can be derived that 051 =+θθ  for the Form II linkage, and therefore the curves of 

the Form II linkage will appear as a straight line in Fig. 5.2.7.  

 
 

Fig. 5.2.7 The transitions of the Wohlhart’s double-Goldberg 6R linkage with multiple 
operation forms. (a)-(c) are the motion sequences of the Form I linkage; (d) is the bifurcation 
configuration between Forms I and III linkages; (e)-(g) are the motion sequences of Form III 
linkage; (h) is the bifurcation configuration between Forms III and II linkages; (i)-(k) are the 
motion sequences of the Form II linkage; (l) is the bifurcation configuration between Forms 

II and IV linkages; (m)-(o) are the motion sequences of  Form IV linkage; and (p) is the 
bifurcation configuration between Forms I and IV linkages. 

 
 

5.2.3 Summary 

In both of the Wohlhart’s double-Goldberg 6R linkage and the double-subtractive-Goldberg 

6R linkage, there are four operation forms, which include two constructive 6R linkage forms 
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and two non-constructive 6R linkage forms. In Eq. (5.2.36), a special geometric relationship 

that 
2

tan
2

tan
2

tan
2

tan δβγα
=  is introduced to the general double-Goldberg 6R linkage.  

caaa ±== 4512 , daa == 6123 , baa == 5634 , 

γααα ±== 4512 , δαα == 6123 , βαα == 5634 , 

dcba
δγβα sinsinsinsin

=== ,  

2
tan

2
tan

2
tan

2
tan δβγα

⋅=⋅ ,  

)6...,,2,1(0 == iRi . 

(5.2.36) 

As a result, one constructive 6R linkage form of the double-Goldberg 6R linkages is 

degenerated into a Bennett linkage. The resultant double-Goldberg 6R linkages have multiple 

operation forms among a constructive 6R linkage form, two non-constructive 6R linkage 

forms and a Bennett 4R linkage form. Different linkage forms can transform into each other 

through bifurcation points.  
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5.3 MULTIPLE OPERATION FORMS OF THE LINE-SYMMETRIC BRICARD 

LINKAGE 

5.3.1 The Spatial Triangle 

A spatial triangle is enclosed by three spatial lines and their common perpendiculars. Its 

kinematics was firstly investigated using dual quaternion method (Yang, 1963). Fig. 5.3.1 

illustrates a spatial triangle with revolute joints connecting the adjacent links. Later, its 

geometry properties were revisited by Mavroidis and Roth (1997) using transformation 

matrix. Recently, the importance of the spatial triangle was discussed in (Huang, 2003; 

Huang and Chen, 1995; Zarrouk and Shoham, 2011).  

 
 

Fig. 5.3.1 The spatial configuration of the spatial triangle. 
 
 

The geometry conditions of the spatial triangle could be determined using the 

transformation matrix that 

ITTT =312312 . (5.3.1) 

By solving Eq. (5.3.1), the geometry conditions of any one of the three links could be 

determined by the other two links (Mavroidis and Roth, 1997). For example, when the 

geometry conditions on links 12 and 23 are known, then the geometric parameters related to 

link 31 could be determined by the following equations.  

223122312

223
1 cossincoscossin

sinsintan
θαααα

θαθ
+

−= , (5.3.2) 
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θθθθθα aaaR −−−
= . 

 

5.3.2 The Bennett Linkages with Two Different Setups 

As discussed in section 2.2, there are two setups of Bennett linkage: one in asymmetric setup 

with positively equaled Bennett ratios, and the other in line-symmetric setup with negatively 

equaled Bennett ratios, as reproduced in Fig. 5.3.2.  

   
 

      (a)                                                                (b) 
 

Fig. 5.3.2 The Bennett linkage in different setups: (a) in asymmetric setup; (b) in line-
symmetric serup 

 
 

The geometry conditions of the Bennett linkage in asymmetric setup are set as follows. 

daa == 3412 , δαα == 3412 , caa == 4123 , γαα == 4123 ,  (5.3.3) 
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23

23

12

12 sinsin
aa
αα

= , ( )4and3,2,10 == iRi . 

Therefore, its closure equations are  

031 =+θθ , 042 =+θθ , 

2
sin

2
sin

2
tan

2
tan 21

δγ

δγ
θθ

−

+

= . (5.3.4) 

Then, the geometry conditions of the corresponding Bennett linkage in line-symmetric setup 

will be as follows. 

daa == 3412 , δαα == 3412 , caa == 4123 , πγαα ±== 4123 ,  

23

23

12

12 sinsin
aa
αα

−= , ( )4and3,2,10 == iRi . 
(5.3.5) 

And its closure equations are  

31 θθ = , 42 θθ = , 

2
cos

2
cos

2
tan

2
tan 21

δγ

δγ
θθ

−

+

= . (5.3.6) 

 

5.3.3 Reconfigurable Line-symmetric Bricard Linkages 

In what follows, we are going to use the Bennett linkage with different setups as an 

intermediate bridge to connect two identical spatial triangles to form different assemblies. 

After removing the links in the center, the rest part exhibits as a general line-symmetric 

Bricard linkage. Since the joint axes shall be kept along the same directions during 

construction, both setups of the Bennett linkage can be used for construction. In Fig. 5.3.3, 

we firstly use a Bennett linkage 6431 ′′′′′′′′  in asymmetric setup as the intermediate bridge to 

connect two identical spatial triangles 321 ′′′  and 654 ′′′ . Note that the geometry conditions on 

link 31 ′′′′ ( 64 ′′′′ ) shall be the same as link 31 ′′ ( 64 ′′ ) except that its offset is zero. The 
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intermediate Bennett linkage is then merged with these two spatial triangles on the links in 

grey color.  

 
 

Fig. 5.3.3 The construction of the first reconfigurable line-symmetric Bricard linkage. 
 

 
 

Fig. 5.3.4 The resultant configuration of the first reconfigurable line-symmetric Bricard 
linkage. 

 
 

As shown in Fig. 5.3.4, after removing the common links and joints marked in dash lines, the 

rest part will form a single-loop overconstrained 6R linkage, which is the first reconfigurable 

line-symmetric Bricard linkage. Note that after construction, the offset on link 13 ′′  is 

transferred to new link 34, and this is the same for links 64 ′′  and 61. 

 

For spatial triangle 321 ′′′ , the geometry conditions on links 21 ′′  and 32 ′′  are  

,, 1212 αα =′=′ aa ,, 2323 βα =′=′ ba  (5.3.7) 
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and the revolute variable 2θ ′  on joint 2′ is a fixed design parameter. Then, the geometry 

conditions related to link 13 ′′  could be determined by Eq. (5.3.2). Here, the representations 

are simplified as follows. 

,,,, 33113131 rRrRda =′=′=′=′ δα  (5.3.8) 

where 

2

2
1 cossincoscossin

sinsintan
θβαβα

θβθ
′+

′
−=′ , 

2

2
3 coscossinsincos

sinsintan
θβαβα

θαθ
′+

′
−=′ , 

2121

2

sincoscoscossin
sinsintan

θθαθθ
θαδ

′′+′′
′

−= , 

( ) 1212121 sinsincoscoscossinsincos θαθθθθθα ′−′−′′−′′= rabd , 

( )
3

33131
1 sinsin

coscoscossinsincos
θδ

θθθθθδ
′

′−−′′−′′
=

dbar , 

( )
3

23232
3 sinsin

coscoscossinsincos
θδ

θθθθθβ
′

′−−′′−′′
=

badr . 

(5.3.9) 

The geometry conditions of spatial triangle 654 ′′′  is identical to spatial triangle 321 ′′′ , where 

1411412451245 ,,, θθααα ′=′=′=′=′=′=′=′ rRRaaa , 

2522523562356 ,,, θθβαα ′=′=′=′=′=′=′=′ rRRbaa , 

3633631643164 ,,, θθδαα ′=′=′=′=′=′=′=′ rRRdaa . 

(5.3.10) 

During the construction, link 13 ′′  in the spatial triangle shares the same link length and twist 

with link 13 ′′′′  in the Bennett linkage in asymmetric setup, except that link 13 ′′′′  has zero 

offset. Therefore, we can use link 13 ′′′′  to design the geometry of link 43 ′′′′  to form a Bennett 

linkage in asymmetric setup, whose geometry conditions and closure equations are the same 

as Eqs. (5.3.3) and (5.3.4). According to the above setups, we can write the geometry 

conditions of the first reconfigurable line-symmetric Bricard linkage as follows. 
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,,, 14145124512 rRRaaa ====== ααα  

,,, 25256235623 rRRbaa ====== βαα  

.,, 36361346134 rRRcaa ====== γαα  

(5.3.11) 

 

 
 

Fig. 5.3.5 The compatibility condition of joint 3 in the first reconfigurable line-symmetric 
Bricard linkage. 

 
 

From the relationship between 3θ ′  in the spatial triangle, 3θ ′′  in the intermediate Bennett 

linkage and 3θ  in the first reconfigurable line-symmetric Bricard linkage, we may derive the 

compatibility condition for joint 3 that,  

πθθθ +′′+′= 333 . (5.3.12) 

The detailed relationship between iθ , iθ ′  and iθ ′′  could be given following the process in Fig. 

5.3.5. Therefore, we can derive the compatibility conditions for the first reconfigurable line-

symmetric Bricard linkage in Eq. (5.3.13), from which we can summarize that 41 θθ ≠ , 

52 θθ =  and 63 θθ ≠ . Even though the geometry conditions of the first reconfigurable line-

symmetric Bricard linkage are line-symmetric in Eq. (5.3.11), the resultant linkage is still an 

asymmetric linkage during movement in Eq. (5.3.13). This is caused by the asymmetric 

Bennett linkage used as the intermediate bridge during the construction.  

πθθθ −′′+′= 111 , 22 θθ ′= , πθθθ +′′+′= 333 , 

πθθπθθθ −′′−′=−′′+′= 11444 , 255 θθθ ′=′= , πθθπθθθ −′′−′=−′′+′= 33666 . 
(5.3.13) 
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Fig. 5.3.6 The construct of the second reconfigurable line-symmetric Bricard linkage. 
 
 

As illustrated in Fig. 5.3.6, a different linkage can be achieved by replacing the 

intermediate bridge in the first reconfigurable line-symmetric Bricard linkage with a Bennett 

linkage in line-symmetric setup, whose geometry conditions and closure equations are the 

same as Eqs. (5.3.5) and (5.3.6). In Fig. 5.3.7, after removing the common links and joints 

marked in dash lines, the rest part will form the second reconfigurable line-symmetric Bricard 

linkage. The offset on link 13 ′′  is transferred to new link 34, and this is the same for links 

64 ′′  and 61. The geometry conditions of the second reconfigurable line-symmetric Bricard 

linkage could be summarized as follows. 

,,, 14145124512 rRRaaa ====== ααα  

,,, 25256235623 rRRbaa ====== βαα  

.,, 36361346134 rRRcaa ==±==== πγαα  

(5.3.14) 
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Fig. 5.3.7 The resultant configuration of the second reconfigurable line-symmetric Bricard 

linkage. 
 
 

Similarly, we can derive the compatibility conditions for the second reconfigurable line-

symmetric Bricard linkage as follows, 

πθθθ −′′+′= 111 , 22 θθ ′= , πθθθ +′′+′= 333 , 

πθθπθθθ −′′+′=−′′+′= 11444 , 255 θθθ ′=′= , πθθπθθθ +′′+′=+′′+′= 33666 . 
(5.3.15) 

From the above equation, we can summarize that 41 θθ = , 52 θθ =  and 63 θθ =  for the 

resultant linkage. Since the linkage is line-symmetric in both geometry conditions and 

revolute variables, the second reconfigurable line-symmetric Bricard linkage is indeed a line-

symmetric linkage. This is caused by the line-symmetric Bennett linkage used as the 

intermediate bridge during construction.  

 

5.3.4 Bifurcation Analysis of the Reconfigurable Line-symmetric Bricard Linkages 

Possible reconfiguration potentials of the resultant linkages could be analyzed by 

investigating their bifurcation behaviors. Since the twist angles on links 34 and 61 are 

different in the first and second reconfigurable line-symmetric Bricard linkages when 

comparing Eqs. (5.3.11) and (5.3.14), it is important to treat these two linkages as different 
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linkages. For the first reconfigurable line-symmetric Bricard linkage, we can plot its 

kinematic paths in Fig. 5.3.8 and its singular value variations in Fig. 5.3.9 using the Singular 

Value Decomposition method. Further examination shows that the kinematic paths in Fig. 

5.3.8 comply with the result in Eq. (5.3.13), and therefore the resultant linkage is confirmed 

to be asymmetric. 5,2θ  are constrained to a fixed value of 









′+

′
− −

3

31

cossincoscossin
sinsintan

θδβδβ
θδ  during the full cycle movement, which corresponds to 

the configuration on joints 2′  and 5′  in the spatial triangle.  

 
Fig. 5.3.8 The kinematic paths of the first reconfigurable Bricard linkage. 

 

 
Fig. 5.3.9 The SVD results of the first reconfigurable Bricard linkage. 
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From the SVD results in Fig. 5.3.9, the fifth singular value falls to near zero at IB  and 

IIB . It is worth investigating possible bifurcation behaviors near these points. At point IB , it 

is found that the first reconfigurable line-symmetric Bricard linkage could bifurcate into an 

operation form with six active joints of revolute in Fig. 5.3.10. The central line in the front 

view is the line of symmetry of the linkage, which is represented as the dashed dot in the top 

view. 

 
 

Fig. 5.3.10 The configuration of the Form I of the first reconfigurable line-symmetric Bricard 
linkage when 180/0000.702 πθ −= , which is a 6R linkage. 

 
 

By using the SVD method, we can plot the linkage’s kinematic paths in Fig. 5.3.11 and 

the singular value variations in Fig. 5.3.12. It is found that this linkage form is in 

correspondence to the closure equations of the Form I general line-symmetric Bricard linkage 

derived in Eq. (4.2.23). To differentiate different linkages, we name the linkage in Fig. 5.3.4 

as the Bennett form of the first reconfigurable Bricard linkage; and the linkage in Fig. 5.3.10 

as the Form I of the first reconfigurable line-symmetric Bricard linkage. In Fig. 5.3.12, the 

fifth singular value falls to zero at IB , which is in accordance with the SVD results in Fig. 

5.3.9. The location of IB  can be determined analytically by substituting the fixed revolute 

parameter on joint 2 in Bennett form into the closure equations of the Form I general line-
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symmetric Bricard linkage in Eq. (4.2.23) as follows, where 2Aterm , 2Bterm  and 2Cterm  are 

functions of 1θ . The solution to Eq. (5.3.16) is derived in the Appendix C. 





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
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sinsintan
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CtermAtermBtermBterm

θδβδβ
θδ

 (5.3.16) 

 
 

Fig. 5.3.11 The kinematic paths of Form I of the first reconfigurable line-symmetric Bricard 
linkage. 

 

 
 

Fig. 5.3.12 The SVD results of Form I of the first reconfigurable line-symmetric Bricard 
linkage. 

 
 

On the other hand, the Bennett form of the first reconfigurable line-symmetric Bricard 

linkage could bifurcate into another operation form with six active joints of revolute at IIB  in 

Fig. 5.3.13. By using the SVD method, we can plot its kinematic paths in Fig. 5.3.14 and its 

singular value variations in Fig. 5.3.15. It is found that this linkage form is in correspondence 
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to the closure equations of the Form II general line-symmetric Bricard linkage in Eq. (4.2.24). 

Therefore, the resultant linkage is called the Form II of first reconfigurable line-symmetric 

Bricard linkage. In Fig. 5.3.15, the fifth singular value falls to zero at IIB , which is in 

accordance with the SVD results in Fig. 5.3.9. The location of IIB  can be determined in the 

same way as IB  by solving Eq. (5.3.17), whose solution is derived in the Appendix C. 
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 (5.3.17) 

 
 

Fig. 5.3.13 The configuration of Form II of the first reconfigurable line-symmetric Bricard 
linkage when 180/0000.702 πθ −= , which is a 6R linkage. 

 

 
 

Fig. 5.3.14 The kinematic paths of Form II of the first reconfigurable line-symmetric Bricard 
linkage. 
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Fig. 5.3.15 The SVD results of Form II of the first reconfigurable line-symmetric Bricard 
linkage. 

 

 
 

Fig. 5.3.16 The transformations of the first reconfigurable line-symmetric Bricard assembly 
with multiple operation forms. (a)-(c) are the motion sequences of the Form I linkage; (d) is 
the bifurcation configuration between Form I linkage and the Bennett form linkage; (e)-(g) 
are the motion sequences of the Bennett form linkage; (h) is the bifurcation configuration 

between the Bennett form linkage and the Form II linkage; (i)-(k) are the motion sequences 
of the Form II linkage. The Forms I and II linkages have 6 active joints of revolute while the 
the Bennett form linkage only have 4 active joints of revolute, which makes the Bennett form 

linkage function like a Bennett linkage. 
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Therefore, we can plot the full map of bifurcation for the first reconfigurable line-

symmetric Bricard linkage in Fig. 5.3.16. The Bennett form linkage can bifurcation into the 

Form I or Form II linkages on different bifurcation points, but the Forms I and II linkages 

cannot bifurcation into each other directly. As a result, we successfully introduced the 

operation form of a Bennett linkage with only 4 active joints of revolute to bridge the two 

forms of the general line-symmetric Bricard linkage. The reconfiguration potential of the first 

reconfigurable line-symmetric Bricard linkage is enabled by the Bennett linkage in 

asymmetric setup used to connect the two identical spatial triangles. This asymmetric 

property is different from the original line-symmetric property, which triggers the 

reconfiguration. 

 

For the second reconfigurable line-symmetric Bricard linkage, a Bennett linkage in line-

symmetric setup is used for the connection between the two identical spatial triangles. We 

can plot the singular value variations in Fig. 5.3.17 and its kinematic paths in Fig. 5.3.18 

using SVD method. As shown in Fig. 5.3.17, no bifurcation points can be found in the second 

reconfigurable line-symmetric Bricard linkage, which is different from the first 

reconfigurable line-symmetric Bricard linkage. 

 
 

Fig. 5.3.17 The SVD results of the second reconfigurable line-symmetric Bricard linkage. 
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Fig. 5.3.18 The kinematic paths of the second reconfigurable line-symmetric Bricard linkage. 
 
 

The kinematic paths of the second reconfigurable line-symmetric Bricard linkage in Fig. 

5.3.18 comply with the relationship in Eq. (5.3.15). Therefore, the resultant linkage is indeed 

a line-symmetric linkage. On the kinematic paths, 5,2θ  are constrained to a fixed value of 


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cossincoscossin
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θδβδβ
θδ  during the full cycle movement, which is the same as 

the Bennett form of the first reconfigurable line-symmetric Bricard linkage. Further 

investigation shows that the kinematic paths in Fig. 5.3.18 are in correspondence with the 

closure equations of the Form II general line-symmetric Bricard linkage in Eq. (4.2.24). 

Therefore, the Bennett form of the second reconfigurable line-symmetric Bricard linkage is 

actually the Form II of the general line-symmetric Bricard linkage. Such result is caused by 

the Bennett linkage with line-symmetric setup used in the second reconfigurable line-

symmetric Bricard linkage. After construction, the symmetry property of the resultant linkage 

is exactly the same as the original line-symmetric Bricard linkage. As a result, the second 

reconfigurable line-symmetric Bricard linkage essentially shares the same kinematic 

properties and bifurcation behaviors as the original general line-symmetric Bricard linkage.  

 

5.3.5 Summary 

In section 5.3, the feasibility to design a reconfigurable linkage is demonstrated by 

constructing basic elements, i.e. spatial triangles and Bennett linkages, in different symmetric 
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manners. From the above investigations, we successfully introduced the operation form of a 

Bennett linkage into the general line-symmetric Bricard linkage using construct method. By 

using spatial triangles and Bennett linkages with different symmetry setups as the building 

blocks, two reconfigurable line-symmetric Bricard linkages are formed which can be 

identified as general line-symmetric Bricard linkages from their geometry conditions. 

 

A summary of the two reconfigurable line-symmetric Bricard linkages could be listed in 

Table 5.3.1. The first reconfigurable line-symmetric Bricard linkage is achieved by firstly 

connecting two identical spatial triangles with a Bennett linkage in asymmetric setup, and 

then removing the redundant links inside to form a closed-loop overconstrained 6R linkage. 

The use of a Bennett linkage in asymmetric setup disrupts the line-symmetric relationship 

among the kinematic variables in the resultant linkage. As a result, the first reconfigurable 

line-symmetric Bricard linkage forms a new asymmetric linkage form with only four active 

joints of revolute. In the first reconfigurable line-symmetric Bricard linkage, the 

reconfiguration between 4R and 6R linkage is achieved through bifurcation points. The 

second reconfigurable line-symmetric Bricard linkage can be obtained by replacing the 

Bennett linkage in asymmetric setup in the first reconfigurable line-symmetric Bricard 

linkage with a Bennett linkage in line-symmetric setup. Since the symmetry property among 

the kinematic variables is preserved during the construction, the resultant linkage is still the 

same as the general line-symmetric Bricard linkage. The construct method used makes the 6R 

linkage form of the general line-symmetric Bricard linkage reaching its limiting position and 

behaving like a 4R linkage. The second reconfigurable line-symmetric Bricard linkage shares 

the same kinematic properties with the general line-symmetric Bricard linkage and it is not 

reconfigurable between the two resultant linkage forms. 
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Table 5.3.1 Summary of the two reconfigurable line-symmetric Bricard linkages. 
Reconfigurable 
Line-symmetric 

Bricard Linkages 

The first reconfigurable line-
symmetric Bricard linkage 

The second reconfigurable 
line-symmetric Bricard linkage 

Construct Units 

Spatial Triangle 
+ 

Bennett linkage in asymmetric 
setup 

+ 
Spatial Triangle 

Spatial Triangle 
+ 

Bennett linkage in line-
symmetric setup 

+ 
Spatial Triangle 

Resultant linkage 
forms 

Form I linkage in 6R 
Form II linkage in 6R 

Bennett linkage form in 4R 

Form I linkage in 6R 
Form II linkage in 4R 

Reconfiguration 
Potential 

Reconfigurable through 
bifurcation points 

Not reconfigurable as the 
resultant linkages forms are 
still independent and distinct 

to each other 
 

 
 

Fig. 5.3.19 The illustration of a general line-symmetric Bricard linkage with reconfiguration 
potentials. 

 
 

In order to design a general line-symmetric Bricard linkage with reconfiguration 

capability, we need to make sure that the resultant linkage can be disassembled into two 

identical spatial triangles and an asymmetric Bennett linkage. Take the illustration in Fig. 

5.3.19 for example, the known parameters on links 12 and 23 are 12a , 12α , 23a , 23α , 2R  and 

the fixed kink angle 2θ . By using these parameters, we could form a spatial triangle 123 with 

a new virtual link 13. Using the closure equations of the spatial triangle in Eq. (5.3.2), we can 
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determine the geometry condition on the virtual link 13 ( 13a  and 13α ), the offsets on links 12 

and 34 ( 1R  and 3R ), the kink angle between links 23 and 31 on joint 3 ( 3θ ′ ) and the kink 

angle between links 31 and 12 on joint 1 ( 1θ ′ ). When the Bennett ratio of link 13 is negatively 

equal to the Bennett ratio of link 34, an asymmetric Bennett linkage could be formed by these 

two links. In this case, the resultant linkage is equivalent to the first reconfigurable line-

symmetric Bricard linkage and therefore it can be reconfigured between 4R and 6R linkages 

through bifurcation points. The geometry conditions for the resultant linkage with 

reconfiguration capability are 

,, 45124512 αα == aa ,, 56235623 αα == aa ,, 61346134 αα == aa  

( ) 112211221211223

123212112231223

34

34

sinsincoscoscossinsincos
cossincoscoscossincossinsinsinsin
θαθθθθθα
θαθαθααθθαα
′−′−′−′
′−′−′

=−
Raaa , 
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331

3312331313112
41 sinsin

coscoscossinsincos
θα

θθθθθα
′

′−−′′−′′
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,52 RR =
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2231232322331
63 sinsin
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θθθθθα
′

−−′−′
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(5.3.18) 

where 5,2θ  and 5,2R  are design parameters for the kink angles and offsets on joints 2 and 5 

when the linkage is in 4R form and 

223122312

223
1 cossincoscossin

sinsintan
θαααα

θαθ
+

−=′ , 

212231223

212
3 cossincoscossin

sinsintan
θαααα

θαθ
+

−=′ . 

(5.3.19) 

On the other hand, when the Bennett ratio of link 13 is positively equal to the Bennett ratio of 

link 34, a line-symmetric Bennett linkage will be formed. In this case, the resultant linkage is 

equivalent to the second reconfigurable line-symmetric Bricard linkage, which cannot 

bifurcate at all.  
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5.4 RECONFIGURABLE BENNETT NETWORK 

5.4.1 The Method of Link-pair Replacement 

As shown in Fig. 5.4.1(a), random links 21 ′′  and 32 ′′′′  are placed in space in such a manner 

that they share a common revolute axis on joints 2′  and 2 ′′ . Once the normal distance 

between joints 2′  and 2 ′′  is fixed to e  and the revolution from link 21 ′′  to link 32 ′′′′  is fixed 

to ε , the relative position between joints 1′  and 3 ′′  can be determined by the link-pair 

32~21 ′′′′′  in Fig. 5.4.1(b).  

  
 

(a)  (b)  
 

Fig. 5.4.1 The spatial setup of link-pair replacement: (a) two links in space share a common 
revolute axis on joints 2′  and 2 ′′ ; (b) a link-pair that determines joints 1′  and 3 ′′  in space. 

 

 
 

Fig. 5.4.2 The link-pair replacement of link-pair 31~23  (grey) replaced by link 12 (black). 
 
 

Since the relative position between joints 1′  and 3 ′′  is already fixed by link-pair 32~21 ′′′′′ , 

we may introduce a new link to replace this link-pair to represent the relative position 

between joints 1′  and 3 ′′ , which is called the link-pair replacement method. The loop 
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enclosed by the existing link-pair and the new link forms a spatial triangle. In Fig. 5.4.2, link-

pair 32~21 ′′′′′  in Fig. 5.4.1 is equivalent to link-pair 23~12  in Fig. 5.4.2. As a result, the 

relative position between joints 1 and 3 was originally represented by link-pair 23~12 , and 

is now represented by link 31. The known parameters on link-pair 23~12  are 12a , 12α , 2R , 

2θ , 23a  and 23α . The parameters to be determined are related to link 31, including 31a , 31α , 

1R , 3R , 1θ  and 3θ , which can be solved from the transformation matrix of the spatial triangle 

in Eq. (5.3.2).  

 

5.4.2 Reconfigurable Bennett Network 

By using the link-pair replacement method, the spatial configuration of a fixed link-pair could 

be replaced by a new link to simplify the representations. We could use this link-pair 

replacement to reconfigure the spatial configuration of a given linkage, especially for 

linkages in the Bennett-based linkage family. Shown in Fig. 5.4.3 is a network of four 

Bennett linkages A, B, C and D, which are made of links α/a , β/b , γ/c  and δ/d  with the 

same Bennett ratios. Such spatial network of four Bennett linkages was firstly discussed by 

Goldberg (1946) when he was investigating the Kempe’s planar mechanism in three-

dimensional space. Later, Baker (1983) re-examined the same network, but the discussion 

was still limited to the Kempe’s planar mechanism. In this network of four Bennett linkages, 

each pair of adjacent Bennett linkages share a common link as the connection, i.e., linkages A 

and B share a common link γ/c , linkages B and C share a common link β/b , linkages C 

and D share a common link δ/d  and linkages D and A share a common link α/a . 
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Fig. 5.4.3 The network of four Bennett linkages A, B, C and D. 

 
 

The mobility of this network can be determined by inspecting linkages A, B and C with 

their connections shown in Fig. 5.4.4(a). The mobility of each Bennett linkage is determined 

by only one revolute variable, and the revolute variables of each Bennett linkage are 

independent to each other. Therefore, the kinematic property of this network with only 

linkages A, B and C is determined by three independent revolute variables, i.e. this network 

has three degrees of freedom. On the other hand, since all the links in this network share the 

same Bennett ratios, we can isomerize the link-pair δα /~/ da  with a new link-pair to form 

a Bennett linkage D in Fig. 5.4.4(b), and the mobility of the resultant network will not be 

affected (Wohlhart, 1991b), which makes the resultant network the same as in Fig. 5.4.3. 

Therefore, the network of four Bennett linkages has three degrees of freedom in general.  

  
(a)  (b)  

Fig. 5.4.4 The reconstruction of the network of four Bennett linkages: (a) the network with 
only Bennett linkages A, B and C; (b) isomerize link-pair δα /~/ δα  to form Bennett 

linkage D. 
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When the relative positions of certain joints on the peripheral loop of the network are 

fixed, the mobility of the network will be reduced accordingly. In the meanwhile, we can use 

the link-pair replacement method to reduce the number of links on the peripheral loop and 

then remove the four links in the center to form a single-loop overconstrained linkage. The 

resultant linkages will be investigated individually for identification. Since the original 

network has three degrees of freedom, we shall at least apply the link-pair replacement twice 

on the peripheral loop to reduce the mobility of the network to only one. The following 

procedures are designed to reconfigure the network of four Bennett linkages: 

• Firstly, select any two link-pairs on the peripheral loop of the Bennett network to 

perform link-pair replacements; 

• Then, remove the four links and joint 0 at the center to make it single loop; 

• Finally, identify the mobility and property of the resultant linkage. 

Note that a solid dot “●” is used to represent the joint that is going to be replaced and a 

hollow dot “○” is used to represent the joint where no actions are performed. 

 

5.4.3 6R Linkages Achieved From the Reconfigurable Bennett Network 

(1) Case 1: Joints 1 and 5 are selected 

As shown in Fig. 5.4.5(a), link-pair replacement is performed on selected joints 1 and 5. The 

original link-pairs 81-12 and 45-56 are replaced by new links 82 and 46, respectively. After 

replacement, the relative position between joints 8 and 2 is rigidified by link 82, which is the 

same for joints 4 and 6. The number of joints and links on the peripheral loop is reduced from 

eight to six. A single-loop overconstrained 6R linkage can be obtained after removing the 

four links and joint 0 at the center.  

 



Chapter 5 Reconfigurable Mechanism Design 

127 

 
 

 

(a)  
 

(b)  
 

Fig. 5.4.5 The construct illustration of the case 1 linkage: (a) the schematics of the 
reconfiguration process for case 1 linkage; (b) linkage identification of the case 1 linkage 

after reconfiguration. 
 
 

As shown in Fig. 5.4.5(b), Bennett linkages B and D are superposed on joint 0 and they 

share the same Bennett ratios on each link, the resultant linkage in case 1 can be identified as 

the Waldron’s hybrid 6R linkage with zero offset on joint 0 (Waldron, 1979), which has one 

degree of freedom. Alternatively, we can perform the link-pair replacement on joints 3 and 7 

to achieve the same resultant linkage.  

 

(2) Case 2: Joints 2 and 5 are selected 

As shown in Fig. 5.4.6(a), link-pair replacement is performed on selected joints 2 and 5. The 

original link-pairs 12-23 and 45-56 are replaced by new links 13 and 46, respectively. After 

replacement, the relative position between joints 1 and 3 is rigidified by link 13, which is the 

same for joints 4 and 6. The number of joints and links on the peripheral loop is reduced from 

eight to six. A single-loop overconstrained 6R linkage can be achieved after removing the 

four links and joint 0 at the center. 
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(a)  
 

(b)  
 

Fig. 5.4.6 The reconfiguration of the Bennett network into the case 2 linkage: (a) the 
schematics of the reconfiguration process of case 2 linkage; (b) linkage identification of the 

case 2 linkage after reconfiguration. 
 
 

We can identify the resultant linkage by inspecting its special case when link-pairs 12-23 

and 45-56 are collinearly rigidified in Fig. 5.4.6(b). When link-pair 45-56 is collinearly 

rigidified, Bennett linkage C will contract into a straight line and therefore joints 0 and 5 are 

constrained along this line. From the combination between Bennett linkages A, B and D, we 

can identify the linkage in Fig. 5.4.6(b) as a variant of the L-shape Goldberg 6R linkage 

proposed by Baker (1993a). A more generalized case will be obtained when link-pairs 12-23 

and 45-56 are not collinearly rigidified. Thus, the resultant linkage in case 2 is a generalized 

variant of the L-shape Goldberg 6R linkage and it has one degree of freedom. Alternatively, 

we can perform link-pair replacement on joint n  and the third joint before or after joint n  to 

achieve the same resultant linkage. 

 

(3) Case 3: Joints 2 and 4 are selected 

As shown in Fig. 5.4.7(a), link-pair replacement is performed on selected joints 2 and 4. The 

original link-pairs 12-23 and 34-45 are replaced by new links 13 and 35, respectively. After 

replacement, the relative position between joints 1 and 3 is rigidified by link 13, which is the 
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same for joints 3 and 5. The number of joints and links on the peripheral loop is reduced from 

eight to six. A single-loop overconstrained 6R linkage will be achieved after removing the 

four links and joint 0 at the center. 

 
  

 
(a)  

 
(b)  

 
Fig. 5.4.7 The reconfiguration of the Bennett network into the case 3 linkage: (a) the 

schematics of the reconfiguration process of case 3 linkage; (b) linkage identification of the 
case 3 linkage after reconfiguration. 

 
 

To identify the resultant linkage, we can inspect the loop connected by joints 1, 3, 5, 6, 0 

and 8, which is a generalized L-shape Goldberg 6R linkage (Goldberg, 1943). As shown in 

Fig. 5.4.7(b), when replacing link-pair 60-08 by link-pair 67-78, an isomerized case of the 

linkage will be obtained (Wohlhart, 1991b). Therefore, the resultant linkage in case 3 is an 

isomerized case of the generalized L-shape Goldberg 6R linkage which has only one degree 

of freedom. Alternatively, we can perform link-pair replacement on joints 4 and 6, 6 and 8 or 

8 and 2 to achieve the same resultant linkage. 

 

(4) Case 4: Joints 2 and 6 are selected 

As shown in Fig. 5.4.8(a), link-pair replacement is performed on selected joints 2 and 6. The 

original link-pairs 12-23 and 56-67 are replaced by new links 13 and 57, respectively. After 

replacement, the relative position between joints 1 and 3 is rigidified by link 13, which is the 
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same for joints 5 and 7. The number of joints and links on the peripheral loop is reduced from 

eight to six. A single-loop overconstrained 6R linkage will be achieved after removing the 

four links and joint 0 at the center. 

 
  

(a)  
 

(b)  
 

Fig. 5.4.8 The reconfiguration of the Bennett network into the case 4 linkage: (a) the 
schematics of the reconfiguration process of case 4 linkage; (b) linkage identification of the 

case 4 linkage after reconfiguration. 
 
 

The resultant linkage can be identified as a generalized Wohlhart’s double-Goldberg 6R 

linkage (Wohlhart, 1991a), see Fig. 5.4.8(b), which has only one degree of freedom. 

Alternatively, we can perform link-pair replacement on joints 4 and 8 to achieve the same 

resultant linkage. 

 

(5) Reconfiguration among Different Cases 

The link-pair replacement method could also be used to reconfigure the resultant linkage 

from one case to another. Take the example of the reconfiguration from case 4 to case 3 of 

the 6R linkage, as shown in Fig. 5.4.9. The only difference between these two cases is that 

joint 6 is selected for link-pair replacement in the case 4 linkage; while joint 4 is selected for 

link-pair replacement in the case 3 linkage. Therefore, we start by performing link-pair 

replacement on joint 4 in the case 4 linkage in Fig. 5.4.9(b). Then in Fig. 5.4.9(c), the link-

pair replacement on joint 6 will be removed to release the constraint on joint 6. As a result, 
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the reconfiguration from case 4 into case 3 is achieved. This procedure can be extended to the 

reconfiguration between other cases following a similar procedure. 

 
 

 
 

(a) (b)  

 
 

(c)  
 

Fig. 5.4.9 The reconfiguration process from case 4 to case 3: (a) the case 4 linkage where 
joints 2 and 6 are selected for link-pair replacement; (b) reconfiguration process from case 4 
linkage into case 3 linkage; (c) the case 3 linkage where joints 2 and 4 are selected for link-

pair replacement. 
 
 

5.4.4 5R Linkages Achieved From the Reconfigurable Bennett Network 

There are some special cases that a 5R linkage can be obtained after the link-pair replacement 

of this Bennett network. As shown in Fig. 5.4.10(a), link-pair replacement is performed on 

selected joints 1 and 2. Since these two joints are adjacent to each other, we need to firstly 

replace link-pair 81-12 by a new link 82 and then replace the new link-pair 82-23 by another 

new link 83. After doing so, the relative position between joints 8 and 3 is rigidified by the 

new link 83.  
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(a)  
 

(b)  
 

Fig. 5.4.10 The reconfiguration of the Bennett network into a 5R linkage: (a) the schematics 
of the link-pair replacement on joints 1 and 2; (b) the schematics of the network divided into 

two halves.  
 
 

To find out the mobility of the resultant network, the original network is split into two 

halves in Fig. 5.4.10(b). When the link-pair replacement is performed on joints 1 and 2, the 

left half of the network comprising of Bennett linkages A and B becomes immobile. As a 

result, link-pair 80-04 on the left half of the network is fixed, i.e., the relative position 

between joints 8 and 4 is fixed. From the construction of the generalized Goldberg 5R linkage, 

we can conclude that only the right half of the network will be mobile and it is actually a 

generalized Goldberg 5R linkage with mobility one. By combining the two halves back 

together and removing the four links inside the loop, the resultant linkage is a generalized 

Goldberg 5R linkage with mobility one.  

 

The serial combination between two Bennett linkages shown in Fig. 5.4.11 is comprised 

of two Bennett linkages superposed on a commonly shared link 05. Since each Bennett 

linkage has one independent revolute variable, this network has two degrees of freedom in 

total. To rigidify this network, both revolute variables must be fixed, i.e., one link-pair from 

each Bennett linkage must be fixed. This is why the left side of network in Fig. 5.4.10(b) 
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becomes immobile when performing link-pair replacement on joints 1 and 2 simultaneously. 

As a result, there will be only 5 movable joints in the resultant linkage, including joints 4, 5, 6, 

7 and 8. In fact, a generalized Goldberg 5R linkage will be obtained when perform link-pair 

replacement on any two adjacent joints of the peripheral loop. 

 
 

Fig. 5.4.11 The serial combination between two Bennett linkages. 
 

 
 

Fig. 5.4.12 The schematics of the case when joints 1 and 3 are selected for link-pair 
replacement. 

 
 

Similar conclusion can be drawn when joints 1 and 3 are selected for link-pair 

replacement in Fig. 5.4.12. The left half of the network will be immobile after the link-pair 

replacement, including the link-pair on joint 2. The right half of the network is essentially a 

generalized Goldberg 5R linkage with only mobility one after removing the four links inside 

the loop. The same resultant linkage will be obtained when selecting joints 3 and 5, 5 and 7 or 

7 and 1 for link-pair replacement. We can use the same method in section 5.4.3 to reconfigure 

between the 5R and 6R linkages achieved from the network. 
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5.4.5 4R Linkage Achieved From the Reconfigurable Bennett Network 

It is worth discussing the possibilities to achieve a Bennett linkage, which is the only single-

loop overconstrained 4R linkage, out of this reconfigurable Bennett network. As shown in the 

above cases, after performing the link-pair replacements twice on the peripheral loop of the 

reconfigurable Bennett network, the resultant linkage becomes a single-loop overconstrained 

6R or 5R linkages with mobility one. By further applying the link-pair replacement on this 

network, the number of links and joints can be reduced to four. However, this operation is 

equivalent to adding another constraint to the 5R and 6R linkages obtained in sections 5.4.3 

and 5.4.4, which will make the resultant linkage immobile.  

 
 

Fig. 5.4.13 A special case of the link-pair replacement on the reconfigurable Bennett network. 
 
 

There are two special cases of the network that are worth noticing. One case is when the 

link-pairs on joints 1, 3, 5 and 7 are constrained into a line, and therefore the resultant 

network will contract into a line, which is a trivial configuration. The other case is when the 

link-pairs on joints 2, 4, 6 and 8 are constrained into a line as shown in Fig. 5.4.13. In this 

case, the resultant network will have only four movable joints and a single-loop mechanism 

can be achieved after removing the four links at the center. Such operation requires the 

geometry conditions of links α/a , β/b , γ/c  and δ/d  to meet the requirement of Bennett 

ratios on the composite links as follows, 
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( ) ( )
dcba +
+

=
+
+ δγβα sinsin , (5.4.1) 

so that the Bennett linkage can be achieved. This 4R linkage achieved from this 

reconfigurable Bennett network is actually a special case of the Kempe’s planar mechanism. 

Research about this part was already discussed in detail by Goldberg (1946). Overall, it is 

possible to obtain a 4R linkage from the proposed reconfigurable Bennett network in an 

indirect way by changing the geometry conditions, which is different from the link-pair 

replacement method proposed above. 

 

5.4.6 Summary 

In section 5.4, the method of link-pair replacement is proposed and applied to a designated 

reconfigurable Bennett network to change its topological structure. The effective number of 

links and joints on the Bennett network is reconfigured after link-pair replacement, which 

leads to different types of single-loop overconstrained 6R and 5R linkages. On the other hand, 

we can also use the link-pair replacement method to reconfigure the resultant linkages into 

different cases of the 6R and 5R linkages. The 4R linkage obtained from the network requires 

further modifications in geometry conditions and therefore cannot be reconfigured directly 

using the line-pair replacement method. The proposed Bennett network demonstrates the 

capability of fulfilling multiple tasks in different operation modes based on solely one 

mechanism and therefore can be categorized as reconfigurable mechanism (Kuo et al., 2009).  

 

Since the sequence of joints is circular in Fig. 5.4.3, we only need to cover the choices of 

joints n/n+1, joints n/n+2, joints n/n+3 and joints n/n+4, which are summarized in Table 5.4.1. 

For example, when selecting joints n/n+1 to perform the link-pair replacement, all of the 

resultant linkages will be generalized Goldberg 5R linkages. When selecting joints n/n+2 to 
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perform the link-pair replacement, if starting from odd number like odd/odd+2, the resultant 

linkages will be generalized Goldberg 5R linkages; if starting from even number like 

even/even+2, the resultant linkages will be isomerized case of the generalized L-shape 

Goldberg 6R linkages. The rest cases could be summarized in a similar manner in Table 5.4.1. 

These linkages were originally derived using different methods. Now, we can conveniently 

correlate them under a common construction basis using the same method. 

Table 5.4.1 The linkages reconfigured from the network of four Bennett linkages. 
General  

linkage type 
Joints to be selected for link-pair replacement Specific  

linkage type Original sequence Generalized sequence 

6R linkages 

1/5, 3/7 odd/odd+4 
Waldron’s hybrid 6R 

linkage with zero 
common offset 

1/4, 2/5, 3/6, 4/7, 5/8 n/n+3 
Generalized variant of 
the L-shape Goldberg 

6R linkage 

2/4, 4/6, 6/8, 8/2 even/even+2 
Isomerized case of the 
generalized L-shape 
Goldberg 6R linkage 

2/6, 4/8 even/even+4 
Generalized 

Wohlhart’s double-
Goldberg 6R linkage 

5R linkages 
1/2, 2/3, 3/4, 4/5, 5/6, 

6/7, 7/8, 8/1 n/n+1 Generalized Goldberg 
5R linkage 1/3, 4/5, 5/7, 7/1 odd/odd+2 

4R linkages 2/4/6/8 even joints 
Bennett linkage 

(Special geometry 
constraint is required) 

Trivial 
configuration 1/3/5/7 odd joints N/A 

 

Besides the proposed network with four Bennett linkages, this link-pair replacement 

method can be applied to other networks as well. Two such examples are presented in Fig. 

5.4.14. When the link-pair replacement method is applied to the network in Fig. 5.4.14(a), the 

L-shape Goldberg 6R linkage and its variant can be derived subsequently. When the link-pair 

replacement method is applied to the network in Fig. 5.4.14(b), the serial Goldberg 6R 

linkage and its variant can be derived in a similar manner.  



Chapter 5 Reconfigurable Mechanism Design 

137 

 
  

 
(a) 

 
(b) 

 
Fig. 5.4.14 Two different types of reconfigurable Bennett network: (a) the serial three-

Bennett network; (b) the L-shape three-Bennett network. 
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Chapter 6   

Conclusions and Future Work 

 

6.1 CONCLUSIONS 

Research works in previous literatures demonstrated continued interests in the topic of 

overconstrained linkages. However, there lacks of a systematic study into the relationship 

among the large number of linkages found, which hinders the potential applications of such 

advanced mechanisms. This dissertation set out from this goal to provide a substantial 

advancement in the systematic organizations of existing overconstrained linkages and 

conceptual designs of reconfigurable mechanisms. 

 

In the study of overconstrained 4R linkage, this dissertation used the special geometries of 

Bennett linkages with different setups to construct different types of overconstrained 6R 

linkages. The existence of these two setups is caused by the trigonometric relationship and 

the linear closure conditions of the revolute variables. However, the existence of the line-

symmetric setup and the asymmetric setup of the Bennett linkage did not draw the necessary 

attentions from researchers in related fields. When the number of links increases, the 

complexity of the problem increases. As demonstrated in this dissertation, this result is 

important not only in using the Bennett linkage as a construct unit to build linkages in the 

Bennett-based family, but also in using its symmetric geometry to construct linkages in the 

Bricard linkage family. Fundamental research work into the Bennett linkage and its 

extensions is of great importance to the future applications of overconstrained linkages. 
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In the study of overconstrained 5R linkage, this dissertation explores different methods to 

use such 5R linkages as the building block to construct overconstrained 6R linkages. The 

method of common link-pair, which was developed by Wohlhart; and the method of common 

Bennett-linkage, which is developed in this dissertation, are used to find all possible 

overconstrained 6R linkages that could be constructed using two overconstrained 5R linkages 

as the building blocks. As a result, a series of double-Goldberg linkage families are 

systematically organized. Three sub families of Wohlhart’s double-Goldberg linkage family, 

mixed double-Goldberg linkage family and double-subtractive-Goldberg linkage family are 

obtained when different combinations of Goldberg 5R linkage and subtractive Goldberg 5R 

linkage are used. The most generalized form of the double-Goldberg linkage family is the 

case when two generalized Goldberg 5R linkages are used. As a result, a large number of 

linkages are covered under this linkage family, which provides a sufficient source of design 

for reconfigurable mechanisms.  

 

In study of overconstrained 6R linkage, this dissertation contributes in a few aspects. 

Firstly in the Bennett-based linkage family, this dissertation systematically organized all 

possible linkages in the double-Goldberg linkage family, whose relationship were previously 

unclear in literatures. Furthermore, the existence of an extra link is identified in the geometry 

conditions of the double-Goldberg linkage families, which could be useful in reconfiguring 

the spatial configuration of the resultant linkages in future applications. Secondly in the 

Bricard linkage family, this dissertation explicitly derived the closure equations of the 

original and revised general line-symmetric Bricard linkages. The revised general line-

symmetric Bricard linkage has negatively equaled offsets on the opposite joints, which shares 

certain similarity with the original linkage but lack of the analytical investigation into its 

explicit kinematics. It is found in this dissertation that there are two different linkage forms 
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for both the original and revised linkages, and the revised case is actually equivalent to the 

original case with different setups on the joint axis directions. This is caused by the limitation 

of DH parameters, which failed to distinguish the identities of such special geometries. The 

result about the general line-symmetric Bricard linkage also provides the analytical proof that 

the line-symmetric octahedral Bricard linkage is just its special case. For the special case of 

the line-symmetric Bricard linkage with no offset, the geometry conditions of the original and 

revised general line-symmetric Bricard linkage become identical. As a result, the resultant 

four linkage forms, two from the original linkage closure and two from the revised linkage 

closure, could transform into each other through bifurcations, which makes them a good 

source of design for reconfigurable mechanisms. However, the two revised linkage closures 

could be alternatively represented using the original linkages by adding or deducting π  on 

the twists of one pair of opposite links.  

 

In this dissertation, several conceptual designs of the reconfigurable mechanisms are 

proposed using the overconstrained linkages. The first reconfigurable mechanism is based on 

an overconstrained 6R linkage which can be reconfigured into a 4R linkage through 

bifurcations. The results in chapters 3 and 4 demonstrate the close connection between 

overconstrained 6R and 4R linkages. By using the original and subtractive cases of Type I 

double-Goldberg linkage as the source of design, the operation form of a 4R linkage is 

introduced to the existing bifurcation loop of these 6R linkages using analytical method. By 

using the general line-symmetric Bricard linkage as the source of design, the same goal is 

achieved using geometric method. A reconfigurable line-symmetric Bricard linkage is formed 

by using a Bennett linkage in different setups to bridge two identical spatial triangles. When 

the line-symmetric Bennett linkage is used, the resultant linkage shares the same geometry 

properties of the original line-symmetric Bricard linkage with one pair of revolute variables 
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reaching their limiting positions. When the asymmetric Bennett linkage is used, the original 

line-symmetric geometry of the linkage is disrupted. As a result, a new kinematic path is 

introduced to the resultant linkage’s bifurcation loop, which makes this linkage capable of 

reconfiguration between 4R and 6R linkages through bifurcation points. 

 

The second design is aimed at reconfiguring the topology of a designated network of 

Bennett linkages with different operation forms. Based on the geometry of the spatial triangle, 

a generic method of link-pair replacement is developed to determine and simplify the relative 

position of a fixed link-pair with a new link. A network of four Bennett linkages is taken as 

an example to demonstrate two different reconfiguration processes. The first process is to 

reconfigure the designated Bennett network into different cases of single-loop 

overconstrained linkages with only one degree of freedom. As a result, five cases of 

overconstrained linkages are obtained from this network using this method. The second 

process is to reconfigure the resultant linkage from one case into another, which is applicable 

for all resultant linkages. By changing the Bennett network into other topologies, i.e., the L-

shape network of three Bennett linkages or the serial network of three Bennett linkages, 

different overconstrained linkages could be achieved. The result in this part provides a 

significant design methodology for reconfigurable mechanisms.  

 

6.2 CONTRIBUTIONS 

In this dissertation, a number of mechanism design issues are addressed to use the 

overconstrained linkages in the conceptual designs of reconfigurable mechanisms. The 

framework developed here provides a comprehensive understanding of overconstrained 

linkages, as well as the analytical, construct and generic methods that could be used to design 

reconfigurable mechanism using overconstrained linkages. Throughout this dissertation, the 



Chapter 6 Conclusions and Future Work 

142 

focus is to explore the kinematics of the overconstrained linkage for a systematical 

understanding of its topology and to apply them in reconfigurable mechanism conceptual 

designs. The key to achieve this goal is to formulate the correlation among various types of 

the overconstrained linkages, and then to investigate methods that could be used to design 

and reconfigure desired linkages. The ultimate goal is to apply overconstrained spatial 

linkages in reconfigurable mechanism designs, so that certain sophisticated and complex 

engineering applications could be accomplished. The contributions of this research are as 

listed: 

Chapter 3 

i. Based on the combination between two overconstrained 5R linkages, a systematic 

organization of all possible linkages in the double-Goldberg linkage family is made, 

which includes a large number of linkages in the Bennett-based linkage family; 

ii. A new mixed double-Goldberg 6R linkage family is built and analyzed using the 

common link-pair and common Bennett linkage methods to combine a Goldberg 5R 

linkage and a subtractive Goldberg 5R linkage; 

Chapter 4 

iii. The kinematic analysis to the original and revised general line-symmetric Bricard 

linkages is performed, where new linkage closures are analyzed and derived;  

iv. The kinematic bifurcations among the four forms of the original and revised line-

symmetric Bricard linkage without offsets are studied; 

Chapter 5 

v. Multiple operation forms and bifurcation behaviors of the double-subtractive-

Goldberg 6R linkage, Wohlhart’s double-Goldberg 6R linkage and the first 

reconfigurable line-symmetric Bricard linkage are studied using analytical and 

construct methods; 
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vi. The innovative construction of the reconfigurable line-symmetric Bricard linkage 

using two spatial triangles bridged by a Bennett linkage in asymmetric setup; 

vii. A new generic method of link-pair replacement is proposed to reconfigure the 

topology of a network of Bennett linkages. The resultant linkages have only one 

degree of freedom and can be reconfigured into each other using this generic method; 

viii. Based on the reconfiguration of a network of Bennett linkages, the relationship among 

a number of linkages in the Bennett-based linkage family is systematically organized; 

 

6.3 FUTURE WORK 

There are still a number of topics to be explored in the area of overconstrained linkage 

kinematics and its applications in advanced mechanism design. Besides the linkages listed in 

chapter 2, there are overconstrained linkages that are not included in this dissertation, such as 

the syncopated linkages. Research activities about the overconstrained linkage should not be 

limited to the kinematics of each specific linkage individually. As demonstrated in this 

dissertation, there is certain relationship among the overconstrained linkages which could be 

useful in applying such advanced mechanism in reconfigurable mechanism designs. Future 

research could focus on the applications of the overconstrained linkage in engineering 

designs.  

 

The families of Bennett-based linkages and Bricard linkages are just a general description 

to generalize overconstrained linkages with similar characteristics. Such categorization could 

never be complete and accurate as new linkages and methods will be discovered and 

developed. Further research into the specific characteristics of certain linkage groups would 

be beneficial in novel mechanism design. On the other hand, solutions to the overconstrained 

linkages would be of great value for computational kinematics in robotics applications. The 
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increasing sophistication and complexity in current robotic applications requires further 

breakthroughs in mathematical tools for efficiency and accuracy. Research work in 

overconstrained linkages provides the theory and engineering foundations to develop such 

mathematical tools in the past decades, and will continue to contribute its value in the future.  

 

It is already demonstrated in this dissertation that the overconstrained linkages could be a 

significant source of advanced mechanism designs with sophisticated or complex functions. 

In the reconfigurable mechanism with multiple operation forms presented in this dissertation, 

the bifurcation behavior is emphasized with great attentions to enable the reconfiguration 

between a 4R linkage and a 6R linkage. Limited by current technology in manufacturing and 

control, such bifurcation behavior is usually avoided in classical mechanism design. The 

result in this dissertation demonstrates the potential of designing overconstrained linkages 

with desired bifurcation behaviors. One possible solution with engineering practicability is to 

design the linkage in its alternative forms, where the complexity of machining each links and 

joints could be largely reduced, and it could be much easier to attach actuator on the links for 

control. Further research shall be explored in such areas to apply reconfigurable mechanisms 

in solving certain engineering problems.  

 

The result in the reconfigurable Bennett network explores a different way of 

reconfigurable mechanism design based on overconstrained linkage. It is a generic method to 

reconfigure the spatial configuration of a designated network of Bennett linkages. Future 

research could be addressed on the special cases of such Bennett network, such as the case 

when all Bennett linkages are identical to each other or the case when all Bennett linkages 

share the same length to each other and etc. From historical experience, it is usually the 

special cases of such designs that provide the most functionality and flexibility in 
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applications. In future application-wise, we would like to see the reconfigurable mechanism 

deployed in novel modular robotic design. In such a system, each modular mimics the 

function of the basic link in the reconfigurable Bennett network, where the geometry 

conditions of each modular could change on its own. The connection of these modular robots 

could be reconfigured into different configurations to provide the necessary motion and 

structural support for the sophisticated tasks in engineering applications and space missions.  
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Appendix A:  

The Singular Value Decomposition (SVD) Method 

The SVD method tries to solve a linkage’s Jacobian matrix with a predictor and corrector 

step (Gan and Pellegrino, 2006). To conduct this numerical scheme, the transformation 

matrix in (A1) is decomposed into two matrices, one matrix contains only the information 

about the revolute variable iθ , marked as θ
iT ; while the other matrix contains information 

about the link length )1( +iia , twist angle )1( +iiα  and offset iR  in the transformation, marked as 

L
ii )1( +T . Thus, 
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iiii TTT 1)1( ++ = , (A2) 

where 

( )











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

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−
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L
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and 

















 −

=
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i
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The closure equation below 
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ITTTTTT =615645342312 , (A5) 

becomes 

( )( )( )( )( )( ) ITTTTTTTTTTTT =θθθθθθ
661556445334223112

LLLLLL . (A6) 

Consider small geometry changes of the linkages configurations from iθ  to ii θθ ∆+  

( 6...,,2,1=i ) with no deformation on any link. The linkage closure must also satisfy in the 

new configurations 

( )( )( )( )( )( ) ITTTTTTTTTTTT =∆+∆+∆+∆+∆+∆+ θθθθθθθθθθθθ
661556445334223112

LLLLLL . (A7) 

If iθ∆  is very small, after operating Taylor expansion of the revolute variables and 

eliminating the higher-order terms, the transformation matrix of the revolute joint is 

( ) ( )
( ) ( )

.
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
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




∆+∆+
∆+−∆+
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T

 (A8) 

Substituting (A8) into (A7) will get 

( ) ( ) ( )
( ) ( ) ( ) ,

...

666615555644445

333342222311112

ITTTTTTTTT
TTTTTTTTT

=∆′+∆′+∆′+

∆′+∆′+∆′+

θθθ

θθθ
θθθθθθ

θθθθθθ

LLL

LLL  
(A9) 

i.e.,  

( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )

( )( )( )( )( )( ) .
...

6661556445334223112
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θ

θ
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LLLLLL

LLLLLL  

(A10) 

Because of (A6), it can be derived that  
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][665544332211 0TTTTTT =∆+∆+∆+∆+∆+∆ θθθθθθ , (A11) 

where ( )( )( )( )( )( )θθθθθθ
6615564453342231121 TTTTTTTTTTTTT LLLLLL ′= , etc., whose forms are similar as  



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T . (A12) 

Due to the skew-symmetry property, each iT  has only 6 independent parameters, which will 

form the Plücker coordinates of each joint axis. This yields a 66×  system of equations, 

whose coefficient matrix is known as the Jacobian of the system. 
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3,13,13,13,13,13,1
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θ
θ
θ
θ
θ
θ

TTTTTT
TTTTTT
TTTTTT
TTTTTT
TTTTTT
TTTTTT

. (A13) 

When the system has mobility one, the matrix in (A13) will be with rank of 5 rather than full 

rank 6. This implies that there is a single set of infinity solutions to the matrix in (A13) and 

the six Plücker coordinates of the linkage are linearly dependent, which leads to the 

conclusion that the linkage has an internal degree of mobility. The solution to (A13) is the 

infinitesimal displacement of the linkage at current configuration, which can be found by 

computing the singular value decomposition (SVD) of the Jacobian matrix.  

 

In the numerical simulation, a small finite displacement, p
iθ∆ (i = 1, 2, …, 6), which is 

called predictor and is proportional to the infinitesimal solution of (A13), is added to iθ  to 

update the linkage in the predicted configuration, p
ii

p
i θθθ ∆+= . However, this linear 
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relationship is very likely to induce errors to the kinematic paths, which is mostly non-linear. 

Therefore, under the predicted configuration, (A6) becomes 

( )( )( )( )( )( ) EITTTTTTTTTTTT +=pLpLpLpLpLpL θθθθθθ
661556445334223112 , (A14) 

where E  is the error matrix.  

 

A corrector, c
iθ∆ , is added to the predictor displacement so that the linkage moves 

towards to the corrected configuration on the kinematic paths, i.e.  

c
i

p
ii

c
i

p
i

n
i θθθθθθ ∆+∆+=∆+= , (A15) 

under which (A6) is satisfied as 

( )( )( )( )( )( ) ITTTTTTTTTTTT =nLnLnLnLnLnL θθθθθθ
661556445334223112 . (A16) 

From (A16)-A(14), it can be obtained that 

ETTTTTT =∆+∆+∆+∆+∆+∆ cpcpcpcpcpcp
665544332211 θθθθθθ . (A17) 

where ( )( )( )( )( )( )pLpLpLpLpLpLp θθθθθθ
6615564453342231121 TTTTTTTTTTTTT = , etc. The solution to (A17) can be 

obtained from the same SVD method as (A13). The new configuration will be used as the 

configuration for the next iteration in simulation. After a number of iterations, the full 

kinematic paths of the linkage could be found.  
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Appendix B:  

Proof to the Relationship in Eq. (5.2.35) 

After introducing the special geometry condition to the closure equations of double-

subtractive-Goldberg linkage, we can simplify DSGP  in Eqs. (5.2.4) and (5.2.5) by 41 mm −=  

and 36 mm −=  as follows. 
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 (B1) 

For Form I linkage, we have 
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The sign of 

2
tan

2
tan

1

12
12

θ

θmm −
 determines the result, which is related to 2,1m  and 

2
tan 1θ .  

• Case 1: 0
2

tan 12
16 >−

θmm  always hold 
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When 01 <≤− θπ , 0
2

tan 1 <
θ , therefore 0

2
tan

2
tan

1

12
16

<
−

θ

θmm
. For Form I linkage, 
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When πθ <≤ 10 , 0
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tan 1 >
θ , therefore 0

2
tan

2
tan

1

12
16

>
−

θ

θmm
. For Form I linkage, 
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For [ )0,1 πθ −∈  or [ )π,0  in the Form I linkage, we will always have  
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(B5) 

which make the curve of 5θ  vs. 1θ  is a straight line. To be specific, for [ )0,1 πθ −∈ , 

πθθ −=+ 51  and for [ )πθ ,01 ∈ , πθθ =+ 51 . 

 

• Case 2: 0
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When πθ <≤ 10 , 0
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tan 1 >
θ , therefore 0

2
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. For Form I linkage, 
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For [ )0,1 πθ −∈  or [ )π,0  in the Form I linkage, we will always have  

2
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2
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6

1

6

1
1

151 θ
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Instead, for [ )0,1 πθ −∈  or [ )π,0  in the Form II linkage, we will always have  

1

2
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tan
2
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1

1

1141 =






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m  or πθθ ±=+ 41 . 
(B9) 

In this case, the curve of 4θ  will become a straight line. To be specific, for the domain of 

[ )0,1 πθ −∈ , πθθ −=+ 41  and for the domain of [ )πθ ,01 ∈ , πθθ =+ 41 .  

 

• Case 3: the sign of 
2

tan 12
16

θmm −  changes with 1θ  

By solving for the critical value, we have 
1

21
1 tan2

m
m−±=θ  when 0

2
tan 12

12 =−
θmm . 

 When 
1

21
1 tan

m
m−−<≤− θπ , we have 0

2
tan 1 <

θ  and 0
2

tan 12
12 <−

θmm . For 

Form I linkage, the same solution is the same as in Eq. (B6). 

 When 0tan 1
1

21 <≤− − θ
m
m , we have 0

2
tan 1 <

θ  and 0
2

tan 12
12 >−

θmm . For 

Form I linkage, the same solution is the same as in Eq. (B3). 
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 When 
1

21
1 tan0

m
m−<<θ , we have 0

2
tan 1 >

θ  and 0
2

tan 12
12 >−

θmm . For Form I 

linkage, the same solution is the same as in Eq. (B4). 

 When πθ <≤−
1

1

21tan
m
m , we have 0

2
tan 1 >

θ  and 0
2

tan 12
12 <−

θmm . For Form 

I linkage, the same solution is the same as in Eq. (B7). 

 

From the results in Case 1 and Case 2, it is obvious that in Case 3, only part of the curve 

of the Form I linkage will have πθθ ±=+ 51 . To be specific:  

 for 
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m
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 for of 





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−∈ −−

1
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1
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1 tan,tan

m
m

m
mθ , πθθ ±≠+ 51 ; and 

 for 







∈ − πθ ,tan

1

21
1 m

m , πθθ =+ 51 .  

Therefore, on the kinematic paths, when 1θ  takes different values, part of the curves of 

Form I will present as a straight line, which also applies for the Form II linkage. Similar 

conclusions can be drawn between 1θ  and 4θ  when following exactly the same process as 

above. 

 

The derivation and results for the Wohlhart’s double-Goldberg linkage could be carried 

out in the same manner as the double-subtractive-Goldberg linkage shown above, where we 

will derive 051 =+θθ  for different cases of parameters and it is unavoidable to have part of 

the kinematic paths to present as a straight line. 
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Appendix C:  

Solutions to Eqs. (5.3.16) and (5.3.17) 

The solutions to Eqs. (5.3.16) and (5.3.17) could be generalized into the set of equations: 
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By substituting Eqs. (C3) and (C1) into Eq. (C2) to eliminate 2θ , we will get 

0tantan 2222
2
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where 2Aterm , 2Bterm  and 2Cterm  are functions of 1θ  as follows. 
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By substituting Eqs. (C5) and (C6) into Eq. (C4), we will get an equation about 1θ  as follows, 
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0cossin 11 =+⋅+⋅ CBA θθ , (C7) 

where 
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After half-tangent transformation of the 1sinθ  and 1cosθ  in Eq. (C7), we can derive that 

( ) ( ) 0
2

tan2
2

tan 112 =++⋅+⋅− BCABC θθ
. (C9) 

By solving Eq. (C9), we can derive that 

BC
CBAA

−
−+±−

=
222

1

2
tanθ . (C10) 

Therefore, the positive result of Eq. (C10) is the solution to Eq. (5.3.16), while the negative 

result of Eq. (C10) is the solution to Eq. (5.3.17). The symbols are determined in Eqs. (C1), 

(C6) and (C8).  
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