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Abstract— Robotic fingers made of soft material and com-
pliant structures usually lead to superior adaptation when
interacting with the unstructured physical environment. In this
paper, we present an embedded sensing solution using optical
fibers for an omni-adaptive soft robotic finger with exceptional
adaptation in all directions. In particular, we managed to insert
a pair of optical fibers inside the finger’s structural cavity
without interfering with its adaptive performance. The resultant
integration is scalable as a versatile, low-cost, and moisture-
proof solution for physically safe human-robot interaction. In
addition, we experimented with our finger design for an object
sorting task and identified sectional diameters of 94% objects
within the ±6mm error and measured 80% of the structural
strains within ±0.1mm/mm error. The proposed sensor design
opens many doors in future applications of soft robotics for
scalable and adaptive physical interactions in the unstructured
environment.

Index Terms— soft robot, tactile sensing, optical fiber, adap-
tive grasping

I. INTRODUCTION

Robotic devices made of soft components not only exhibit
superior adaptation in actuation [1], but also in sensing
[2]. Previous research on tactile sensing usually requires an
explicit understanding of the material mechanics to build
analytical models that translate structural deformation into
sensory data [3], [4]. However, the non-linear mechanics
inherently involved in the soft material remains a challenging
issue in the kinematic analysis and dynamic modeling of soft
robot [4]–[7]. On the other hand, recent research has shown
novel tactile sensing solutions using soft robots through the
integration with other devices, such as visual sensors [8].

However, modeling the deformation of a soft structure
is challenging. Numerous analyses and calculations were
implemented to simulate a simple soft structure [5]. The
traditional sensing technology to evaluate the strain is using
a strain gauge, which takes advantage of the properties of
electrical principle [9], which requires the integration of the
gauge in the fingers. Piezoresistance is a scalable and low-
cost sensory element to generate tactile perception, but it also
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Fig. 1: Overview of scalable sensing design of gripper and
sensors. The sensor system includes a strong LED light
source (A), a microprocessor box (B), soft fingers (C), and
optical fiber (D), which is installed on a real robot arm
UR5 (E). Each finger will passively adapt to a baseball (F)
while grasping, especially be effective for cylindrical objects
(G). The final integration of sensor with gripper can achieve
detecting the horizontal section in real time (H).

needs electrical arrays to support and is challenging to mea-
sure the bending state directly [10], [11]. Also, waterproofing
must be considered, in case we use the gripper in a wet
environment or even underwater, which is more challenging
during tactile sensing integration.

A. Related Work

Recent research about the tactile sensor for soft robots
focuses on innovations relating to scalability and engineering
potentials [12]. The tendency of using neural networks to
process high-dimensional sensory data is widely accepted
by researchers, which provide a more accurate model via
repetitious training [3], [8], [13], [14]. However, the tradi-
tional calibration method is also applied by some sensors
and shows good results [10], [11]. Piezoresistive is an
appropriate component for tactile sensing on soft robot [15],
its application on a perceptive glove shows the scalability on
tactile sorting [13]. A handmade capacitive stack-up sensor
was tested and applied on an object sorting experiment [10],
which is directly attached to a finger of handed shearing
auxetic cylinders [16].

Optical sensing has been widely researched for its ease of
integration with soft robots. An innovative method to detect
the deformation of soft prosthetic hand via stretchable optical
waveguides shows the prospect of an optical sensor [11]. A
plastic optical fiber pressure sensor [17] was presented as the
merits of low cost and simple fabrication. Moreover, recent

2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
Yale University, USA

978-1-7281-6570-7/20/$31.00 ©2020 IEEE 572

Authorized licensed use limited to: University of Liverpool. Downloaded on July 06,2020 at 03:18:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Soft finger and sensor design. The Sagittal plane
and Coronal plane are the main bending planes (A). The
soft optical fiber passes through the inner tube to transmit
the light which will be received by a black coated optical
fiber (A). The tube wall will hinder light transmission while
bending (B), which relate to the midpoint displacement (C).

research about applying soft optoelectronic sensory foams
presented an extremely accurate estimated 3D-model for the
entire deformation of a regular soft foam [14]. Most recent
research using optical lace also opens a window for soft
robot tactile sensing [8] using the contact of input fiber and
distributed output fibers, which are inserted in a 3D-printed
elastomer.

The soft grippers as the base of the tactile sensor have a
variety of designs with diverse functions [18]. An embedded
tactile sensor enables more functions for the gripper, such as
closed-loop object picking [19]. Besides, the sorting experi-
ment is a good verification for the properties of soft robotic
fingers with tactile sensing. The application of fingers with
the structure of handed shearing auxetic showed excellent
examples of object sorting and material classification [10],
[20].

B. Proposed Method and Contributions

In this paper, we propose a scalable, embedded tactile
sensing solution using soft optical fiber inside a novel design
of soft robot finger with passive, omni-directional adaptation,
as shown in Fig. 1. While most tactile sensing solutions are
usually considered as a subsystem independent of the overall
robot, our proposed design is seamlessly integrated inside
this unique network structure of the soft robotic finger with-
out impeding its omni-adaptive performance. We managed to
capture the three-dimensional geometric deformation through
a scalable sensing solution using soft optical fiber. The major
contributions of this paper are listed as the following.

• An integrated design of the fiber-cavity sensor with an
omni-adaptive soft finger.

• Extensive experiment and characterization of the fiber-
cavity senor.

• Sensor implementation in sorting tasks of daily objects
via an integrated gripper system.

II. EMBEDDED TACTILE SENSING FOR SCALABILITY

A. Soft Finger Network for Omni-adaptation

In this paper, we adopt a novel design of soft finger
networks with passive adaptation in all directions of physical

contact. Fig. 2A shows the three-dimensional (3D) view of
the soft finger network, where layers of squared shapes with
the shrinking area are stacked on top of the other with links
on the sides to connect them, forming the basic structure
of this finger design. When fabricated with soft material,
such as silicone rubber or Thermoplastic Urethane (TPU),
the 3D structure is capable of passive adaptation of the
overall structural geometry, as shown in Figs. 2B & C.
Due to the hollowed squares used, the finger achieves omni-
directional adaptation instead of a uni-directional response.
One can design any shape for each of the layers as long as
a specific hollow can be kept near the certain of each layer
for geometric adaptation.

B. Embedded Optical Fiber for Scalable Tactile Sensing

Given the omni-adaptive nature of this soft finger network,
we set our sensor design with a goal of minimum interference
with its geometric adaptation without limiting its usage
scenario. As a result, the optical fibers are selected for several
reasons. First, the material property of the optical fibers is
very similar to that of some materials used for this soft
finger network. Second, optical sensing is capable of robust
measurement over a long distance, and the optical sensor is
not placed in the finger structure, but outside of it near the
gripper base. As a result, we can still apply such soft finger
design in the same operational environment without worrying
about the protection of the sensing electronics on the finger.
Finally, optical fibers are a relatively cheap solution when
scalability is taken into considerations.

We implement the resultant sensor design by creating a
cavity with the structural supporting beams between each
finger layer and then embedding the optical fibers inside to
capture the geometric deformation. The transmitting fiber is
different from the receiving fiber. The core of transmitting
optical fiber (Model hof-2, EverHeng Optical Co., Shenzhen,
China) is 2mm polymethyl methacrylate (PMMA) fiber,
which has a 0.2-0.5db/m attenuation rate, and with a cladding
of transparent polytetrafluoroethylene (PTFE) outside. The
receiving fiber (Model epef-1.5) is 1.5mm PMMA core
with PTFE cladding and additional black polyvinyl chloride
(PVC) jacket. For example, in the soft finger structure with
four supporting beams shown in Fig. 2, the cylindrical cavity
is designed inside each of the beams matching the diameter
of the optical fiber. From the side-viewing angle in Fig. 2B,
the transmitting optical fiber with a light source is inserted
from the base of one beam at the backside of interaction.
Then, the receiving optical fiber is inserted through another
beam at the front side of interaction to its base, where photo-
resistance sensors (Model GL5506) are installed. During
bending motions, the reading from the sensors corresponds
to the number of geometric deformations inside the front side
beams of interaction. When the backbones bend in a direc-
tion, the received light intensity will attenuate theoretically
because of being hindered by the deformation of the tube
wall. We named the sensor as a fiber-cavity sensor. Also,
the length of the inner cavity needs to be carefully selected.
After several testing, 35mm shows a satisfying result of
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Fig. 3: Experimental platform (A) and data from fiber-cavity
sensors. The half of gripper is a dual-finger model with four-
channel of fiber-cavity sensor (B), which was directly used in
the experiment. The graph is about the raw data of sensors
(line with square and error bar) and its derivative (thinner
fine line) after filtering (C).

performance. Too long or too short will cause a reduction
of the measurement range.

III. SENSOR CHARACTERIZATION

Given the nature of our integrated sensor design, the
experiment setup is closely related to observations of the soft
finger network under loading. Besides the pure bending be-
havior at the normal surface, the omni-directional adaptation
relies greatly on the twisting deformation at random angles to
the finger surface, which is essentially a differential reading
from the two contacting beams. As a result, we set up our
experiment characterization by measuring the force normal to
the finger surface, as shown in Fig. 3A. A T-shape rod is fixed
on top of a manual linear guide-way to push the midpoint of
the finger at a right angle as the displacement input. A 6D
force and torque sensor (ATI Nano 17) is fixed at the end
of the T-shape rod for measuring the output force. Optical
sensor readings are also recorded for sensor characterization
and calibration.

In this experiment, two such soft finger networks are
mounted at the same time, which is the same as the ones
to be installed on one of the fingertips of the robotic gripper
to be used later. A total of four sets of fiber-cavity sensor
readings are recorded in Fig. 3B with results reported in
Fig. 3C. We definite the original point of displacement at
the midpoint of the backbone in the non-grasping state. The
positive direction is towards the back surface. The sensor
value is a voltage from 0v to 5v, which positively correlates
with the light intensity. Each measurement is repeated three
times, and the standard error bars are also included.

We identify three stages of behaviors from the results
in Fig. 3C between a measurement range of 0-35mm dis-
placement range. For the initial stage up to around 5mm

displacement at finger midpoint, the small bending behaviors
of the soft finger network is not well-captured by the fiber-
cavity sensors. The diffuse reflection of the light by the tube
wall causes the photo-transduction instability, invalidating
sensor readings at this stage. For the final stage beyond
30mm displacement at finger midpoint, although the soft
finger network still shows adaptive behaviors, the inner layers
start to stack on top of each other, as shown in Fig. 2C,
making it challenging to produce consistent sensor readings.
Sensors readings during this stage are also disregarded by
one can still utilize the twisting behavior at this stage for
grasping an object of irregular shape.

During the stable stage between 5-30mm displacement at
finger midpoint, the recorded results show good linearity be-
tween displacement and sensor readings in voltage changes,
making this stage the most suitable for usage. The results
in Fig. 3C shows slight differences in the sensors placed
at the same locations on the two soft finger network, but
consistent results are recorded. We found that this is caused
by the fabrication errors and assembly inaccuracies, which
can be improved with optimized engineering processing and
sensor calibration shown in Fig. 4A. After normalization and
linear fitting, the sensor can be regarded as a linear element
that relates to the midpoint displacement in Fig. 4A. The
R2 value is within 0.9544 and 0.9887, which is acceptable
for linear fitting. Therefore, this interval of the curve can be
regarded as a linear variation that can be used for sensor
integration.

Tactile sensing information is extracted by mapping the
displacement readings from the optical sensors with the force
measurement from the 6D FT sensors, as shown in Fig.
4C. The measured displacement-force relationship shows
consistent results after long-hours of usage and the reliable
linear performance from previous experiments. We found the
data was almost the same for any finger after the calibration
and sorting experiments for two weeks. Therefore, by using
the results in Figs. 3C and Fig. 4C, one can derive the force

Fig. 4: Linear fitting in the interval of 5mm to 30mm (A).
Magnitude and angle of the contact force at midpoint (B) of
single-finger module change with displacement (C).
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information of the soft finger structure during the interaction.
Alternatively, one can also detect the hardness to measure the
strain under a constant force. Basically, The softer the object
is, the greater the strain will be.

IV. OBJECT SORTING

As shown in Fig. 1, we propose a dual-finger design to
replace the existing gripper’s rigid finger. The OnRobot RG6
is adopted for modification with two sets of the dual-finger
structure. The RG6 is selected for its relatively broader range
of grasping and heavy payload design. One can easily modify
the base mount design to install the proposed soft finger
on almost any robot gripper with rigid fingers as a scalable
solution.

For the object sorting task, both YCB objects [21] and
some other routine objects are chosen for experiments. A
microcomputer (Arduino NANO) is integrated with the fiber-
cavity sensors on the gripper to send all sensor values
to the upper computer by a serial port in real-time. The
grasping force of RG6 needs to be set by users, but RG6 will
measure and feedback the current width of the gripper. The
additional sensing capability introduced by the fiber-cavity
sensor enables further refined control of the grasping process
by estimating the interaction force and shape the geometry
of the objects in contact. The actual sectional diameter of
the object under specific force theoretically equals to the
estimated midpoint displacement plus the width of RG6 at
the beginning contact point. Moreover, the actual strain of
the object can be calculated by measuring the width of the
object at both beginning contact state and final steady-state.

A. Calibration

Calibration of the sensor needs to transfers the raw mea-
surement of the electronics data into intuitive information
of real values. To do so, we use a series of plates with
different standard widths to calibrate the gripper (Fig. 5A).
Although the resolution of the sensor is less than 0.2mm, the
inaccuracy is beyond this range. Therefore, we implement the
calibration process by letting the gripper grasp the plates with
standard width and record the sensor value. After obtaining
a group of data, the linear fitting will be used to obtain a
proportional relationship as the calibrated result of the sensor.
So, any sensor readings will be transferred to the midpoint
displacement via the calibrated expression.

B. Sorting Experiment

Some objects with different sizes and compliance were
selected in the sorting experiment in Fig. 5B. One obvious
challenge to distinguish objects with sectional diameters
similar to each other. However, this is not common in
the YCB object sets used in our experiment. We adopt a
qualitative measurement of the object’s hardness in a way
similar to human grasping, where a scalar level of hardness
is adopted.

It should be noted that more accurate measurement is
always preferable, yet different grasping compliance may
occur when approached from different angles. So the strains

Fig. 5: Fast calibration for gripper in a real application (A). A
selection of sorting objects are selected from the YCB dataset
and daily objects (B). Due to the parallel finger configuration
used in our experiment, some objects (C) may slip through
the gap between dual-fingers during grasping.

of samples under a positive force were manually determined
by observing and simple measuring. The standard strains of
samples are not accurate, but following the common sense of
human, which can be used to judge the estimated strain. For
object classification, our experiment requires the gripper to
squeeze the object to determine these geometric features for
sorting, which is similar to the human when visual data is
not available or sufficiently enough. In this way, if the force
applied to the object is constant, the strain of the object will
be different due to the different compliant characteristics.
The strain of each object is the ratio of deformation and
original width before being exerted in a specific force. The
ratio should be different to distinguish the objects (Fig. 6).

C. Result

The results are reported in Fig. 6, where we explore the
basic discernibility of the gripper for width and compliance.
The total amount of sample objects is 42. The green trian-
gular marks, as shown in Fig. 6A are nine softest objects
whose estimated diameters are much smaller than the actual
diameters because their structures or materials cannot support
the finger force. The orange diamond marks are the two balls
whose diameters adapt the finger space but will cause the
lateral bending and torsion of the finger. The lateral bending
will result in the underestimate of the diameter in the sagittal
plane. The black square mark is the result of a container of
glass cleaner. The overestimate error happened because once
a pair of fingers contact the bigger diameter of the bottle, it
will prevent the other pair of fingers from contacting the
smaller part. Thus, one result is typical, but the other is
abnormal. Their strain cannot measure eight objects because
the midpoint displacement did not reach a valid interval from
5mm to 30mm. The total amount of objects whose diameter
and compliance can be correctly measured is 28 in 38, so
the success rate of object classification is 73.7%.

Expect the soft objects, balls, and irregular objects, 94%
of results from the rest 26 objects are in the range of ±6mm
with respect to absolutely accurate, as shown in Fig. 6A. The
average error of the estimated diameter is 3.17mm. The result
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Fig. 6: Comparison of actual object properties with senor es-
timated properties. The estimated sectional diameter showed
a nearly linear relationship with the actual diameter (A). 94%
of rigid objects are within the error of ±6mm, expect the
abnormal objects. The estimated strain, which represents the
compliance of the object, has a relative consistency with the
actual strain (B). The cross line is the soft-rigid boundary.
The upper-right part is soft objects, and the lower-left part
is rigid objects.

comes from the sectional diameter measured by two pairs of
fiber-cavity sensors. There have four pairs of sensors, but
we only use the two intermediate pairs of sensors to ensure
the fingers entirely contact the objects, and the shape of the
object passively drives the finger.

Twenty-eight objects have appropriate data to estimate
strain from total graspable 38 objects. The result was shown
in Fig. 6B. We cannot get an accurate conclusion as the
actual strains are an intuitive perception of humans, but
qualitative analysis is possible. The black dashed cross line
is the boundary of rigid and soft according to the experiment.
The objects in the upper-right section are deformable, such as
plush toys. The objects in the lower-left section are rigid. The
average error of the estimated strain is 0.062mm/mm. Some
objects cannot induce enough deformation of the finger,
which cannot calculate the strain via sensor data. So, for
those objects, we consider them as unrecognizable samples.
The estimated strain can be used to describe the hardness
of an object because the grasping force is always the same.
With the increase of strain, the objects become softer.

V. DISCUSSION

A. Scalable Integration of Omni-adaptive Soft Finger

The scalability of the fiber-cavity sensory gripper is its
most exceptional merit. First, the whole strategy is low-cost
and straightforward the total cost of the four-fingers gripper
with eight fiber-cavity sensors and one microcomputer (Fig.
1E) is less than 8 US dollars and the time of assembling all
sensors into one 3D-printed finger is less than one minute.
Thus, the modular sensory fingers could be as daily using
or even more short-term use. Second, the structure could be
used in many aspects, not only in the grasping area, and
with the changing of the whole shape, sensor strategy can
quickly adapt to the new shape without modification. For
example, it can be used as a wheel to adapt the topography
or an exoskeleton to adapt the wearer’s body. Third, current
fingers do not need to embed circuits, so working in a wet
environment is its additional merit. Integrating these merits
above, one of the most suitable working cases is in waste
sorting. We do not need to consider the water in garbage and
sterilization and disinfection method for the finger. Forth,
the soft material and flexible structure could enable any
rigid gripper a kind of omni-adaptability, and the scalable
fiber-cavity sensor enables it a tactile sense. At last, the
fiber-cavity sensor still has great potential because of high
distinguishability and sensitivity after calibrating.

B. Enabling Design for Omni-adaptation

A major advantage of such a soft finger network is the ease
of integration with existing gripper designs. By replacing
the fingertips with this soft finger network, almost any rigid
gripper is instantly enabled with passive adaptation with
superior performance in all contact directions, such as the
one shown in Fig. 1. Further discussion of this finger design
is beyond the scope of this paper. In this paper, we aim
at utilizing such geometric adaptation to integrate a sensing
solution within the finger network structure.

C. Engineering Application for Object Sorting

Our current fiber-cavity sensory gripper could be improved
further. First, the ambient light could impact the sensor
values as the material is not lightproof. Although the cal-
ibrating operations could eliminate the influence, the change
of light after calibration still impact the sensor. The receiving
optical fiber is black coated, so the transparency of the white
TPU causes the sensitivity to ambient light. Second, the
inconsistency of the fiber-cavity sensor due to the fabricating
process is a problem, though a temporary solution to the
normalizing process could unify the curves. The 3D-printed
TPU finger has defects and burrs on the inner tube wall that
also affect the light transmission. Third, to pursue extremely
low-cost, high sensitivity in the weak light environment and
wide sensing range, we apply photoresistors as our under-
lying sensory elements. However, the inconsistency of the
element, temperature-dependent, and non-linear properties
are its drawbacks.

The drawbacks of the current fiber-cavity sensor are not
insoluble. For the sensitivity of ambient light, a grey or black
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colored TPU material, or just coat, a light-absorption layer
could reduce transmissivity widely. For the inconsistency
of the fiber-cavity sensor, we are trying to use casting to
manufacture the finger whose surface is smooth and subtle.
Besides, we will try to use some photoresistors with higher
accuracy or find an appropriate photodiode.

The result of estimating diameter (Fig. 6A) is significant
for further work because the precise regulation for the soft
object shows the potential of fusion of visual and tactile sens-
ing. An extra camera can fast measure the visual diameter,
but the material is unknowable. With the fiber-cavity sensor,
we can estimate hardness as the softer objects will have more
differences between the visual size and physical size.

As for the result of estimating strain (Fig. 6A), the
quantitative conclusion is inaccurate. There are three possible
reasons. First, the standard strains of specific objects are
measured by human perception. We ensured the rank of
each object’s strain was correct but were unable to guarantee
that the absolute value was correct. So, the distribution
of points is scattered, but the tendency of points basically
concentrates in the correct area. The conclusion of ’soft’
or ’rigid’ for a particular object is correct according to the
value of sensors and the soft-rigid boundary. Second, we
think the sensor is accurate in the range of 5-30mm, but
some objects cannot reach 5mm of midpoint displacement,
because their structural shape limits the bending of fingers,
whose contact points are at the tips of fingers. Third, the
compliance of 3D-printed finger are inconsistent, and the
sectional diameter of the object is variable, both of which
result in the heterogeneous force while grasping. However,
for human perception, the hardness of an object is a scale
rather than a numerical value, so we consider the result is
useful as the tendency is correct.

VI. FINAL REMARKS

In this paper, we demonstrated a scalable bending sensor
method for a novel design of omni-adaptive soft robotic
fingers. Our work combined the omni-adaptive finger and
fiber-cavity sensor to enable more functions based on its
structure. Furthermore, we implemented experiments to find
the relationship between midpoint displacement and sensor
value. We demonstrated their nearly linear relationship in the
interval of 5mm to 30mm, which could be used to calibrate
the gripper and estimate the actual width and compliance of
objects in sorting tasks. The final result of sorting showed the
estimated widths of 94% objects are within ±6mm error, and
the estimate strains of 80% objects are within ±0.1mm/mm.
The object identification rate from a total of 38 objects
from the YCB dataset and some other objects covering basic
routine things is 73.7%.

Future work on this sensory gripper will focus on the
improvement of the fiber-cavity sensor and application in
multi-tasking. We will continue to develop the advantages
of low-cost and modular design, meanwhile, to improve the
performance of the fiber-cavity sensor. Our next application
scenarios are for waste sorting, which needs the properties of
omni-adaptive, waterproof, low-cost, and easy-replaced. We

want to combine the computer vision and neural network to
complete a more perceptive model of the finger and build a
system to learn how to grasp new objects through training.
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