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Abstract— We present DeepClaw as a reconfigurable bench-
mark of robotic hardware and task hierarchy for robot learning.
The DeepClaw benchmark aims at a mechatronics perspective
of the robot learning problem, which features a minimum
design of robot cell that can be easily reconfigured to host
robot hardware from various vendors, including manipulators,
grippers, cameras, desks, and objects, aiming at a streamlined
collection of physical manipulation data and evaluation of
the learned skills for hardware benchmarking. We provide a
detailed design of the robot cell with readily available parts to
build the experiment environment that can host a wide range
of robotic hardware commonly adopted for robot learning.
We propose a hierarchical pipeline of software integration,
including localization, recognition, grasp planning, and motion
planning, to streamline learning-based robot control, data
collection, and experiment validation towards shareability and
reproducibility. We present benchmarking results of the Deep-
Claw system for a baseline Tic-Tac-Toe task, a bin-clearing task,
and a jigsaw puzzle task using three sets of standard robotic
hardware. Our results show that tasks defined in DeepClaw
can be easily reproduced on three robot cells. Under the same
task setup, the differences in robotic hardware used will present
a non-negligible impact on the performance metrics of robot
learning. All design layouts and codes are hosted on Github for
open access (https://github.com/bionicdl-sustech/DeepClaw).

Index Terms— Benchmark, Manipulation, Robot Learning

I. INTRODUCTION

Robot Learning is an active field of research that adopts
a data-driven approach by applying machine learning algo-
rithms to advanced robots for autonomous control towards
intelligent and physical interactions. In order to build up the
database for model training, researchers usually adopt pas-
sive perception such as RGB or depth cameras to formulate
an image-based robot control scheme as experiment setup
[1], [2], [3], [4]. Such an image-based method provides a
continuous collection and validation of the interaction data
in manipulation tasks. However, active perception may be
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necessary to capture the localized interaction at the physical
interface between the gripper and objects, as well as the
functional performance of the multi-joint manipulators.

Unlike robots such as autonomous cars or drones with
significant interactions with the road or the air, robotic
manipulation involves a wide range of objects with vastly
differentiated physical properties and functional behaviors,
making it a challenging task to build a learning system for
robotic manipulation [5]. With the availability of a wide
selection of robotic hardware with differentiated engineering
specifications and functional performances, how to make
an informed selection and integration of robot hardware
becomes the first question to ask when transferring learned
models to reality.
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Fig. 1: The design of DeepClaw platform towards a repro-
ducible and shareable benchmark for learning robotic ma-
nipulation, including (a) a standardized robot station design,
(b) a modular pipeline for functional integration, and (c)
exemplified task variations.

In this paper, we propose the DeepClaw in Fig. 1 as

a minimum robot cell design to benchmark the robotic

hardware for learning object manipulation, which involves
three levels of embodiment.

o Modular frame design: aims at a standard mounting

frame for all hardware components involved in a robot

learning task, which can be easily sourced from global
suppliers and local manufacturing shops with open
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songcy@sustech.edu.cn for a baseline experiment environment.
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« Functional pipeline hierarchy: enables a unified soft-
ware architecture of system integration, algorithm
pipeline implementation, data communication.

« Game tasks & objects: demonstrates three benchmark-
ing tasks, namely tic-tac-toe, claw machine and jigsaw
puzzle, with spatial-temporal task metrics and specific
functional metrics for hardware benchmarking.

In the rest of the paper, we first review the related work
on benchmarks of robot learning in Section II. In section III,
we present a detailed description of the DeepClaw. Section
IV presents the experiment design and results of three game-
based benchmarks using DeepClaw with three sets of robotic
hardware. Final remarks are enclosed in section V, which
ends this paper.

[I. RELATED WORK

While it remains a question of using machine learning to
aid the design of a manipulation system for robot learning
[6], there is a wide range of robotic hardware to build up
the initial understanding. Collaborative robots, as a light-
weight version of the industrial robots, provide ease of
access to robotic manipulation with force-limited safety,
cost-effectiveness, and user-friendly interfaces [7]. Although
recent research by Google shows the potential of using large-
scale picking data to train models of robot leaming [1],
it is unrealistic to custom build and deploy such a large
number of robotic hardware for continuous research. The
recent proposal of the RoboNet demonstrates an improved
effort using data collected from various robot cells with
similar setups and experiment environment in an open-access
format [8], which focus mainly on visual foresight tasks.
Other efforts such as the ROBEL [9] and REPLAB [10]
aim at a low-cost infrastructure for reinforcement learning
using robotic hardware with limited motor function. The
RLBench is another effort to build a simulated environment
for reinforcement learning using a single robot of Franka
Emika through 100 task variations [4].

The broad selection of robotic hardware and a lack of
consideration of their mechanical differences motivate the
need for a benchmark of robotic devices for leamning object
manipulation. A recent survey shows that there are more than
30 collaborative robots with different functional performance
and engineering specifications [11]. To further reduce the
dimensionality of the learning problem, parallel grippers
[12], [2], as a mature, robust, and cost-effective design of
end-effector, are widely adopted instead of using robotic
hand with multi-fingers [13], [5]. The object variations and
task specifications add further complexity in setting up the
robot cell for learning [4]. While many machine learning
research much relies on simulated data to test algorithm as a
first attempt [14], researchers also become increasingly aware
of the gap between simulation and reality when transferring
the learned model for hardware validations [15], [16].

After reviewing the efforts of making shareable bench-
marks for manipulation from literature in Table 1, we
summarize five aspects of consideration to develop an in-

depth understanding of the physical interaction in object
manipulation.

A. Manipulation Task

Manipulation task focuses on a goal-oriented benchmark-
ing of the integration between advanced robotics and ma-
chine learning. For arm-type manipulators, the general task
design spans from basic human skills such as picking,
placing, pushing [8], elc., to a wide range of advanced tasks
in daily life activities [17]. A hierarchical decomposition
of the manipulation task is usually a preferred choice to
establish reusable skills for learning system design [18],
which requires a systematic task protocol design.

B. Target Object

The target object is a minimum collection of the physical
features in manipulation, including shape, weight, size, color,
material, etc., which must be perceived by the robot system
with accuracy. It represents an object-centric generalization
in robot learning, such as the YCB object dataset [19].
Simulated object generation also provides an alternative
source of data for offline training [2], [3].

C. Operating Environment

The operating environment requires reliable and robust
support to maintain a quality data collection protocol and
a safe operation of the robot with human, if necessary. It
usually involves a flat desk [3] or an object tray [1] as the
manipulation arena. The robot can be mounted on the desk
or a dedicated pedestal with a fixed spatial relationship with
the desk [4]. In the meanwhile, one should also consider the
mounting frame and angle of the cameras for calibration and
view range, which can be on the hand, to the base, or on the
robot [20].

D. Robotic Hardware

Robotic hardware usually involves a manipulator as the
arm, a vision sensor as the eye, and an end-effector as the
hand for an image-based robot control system [8]. As shown
in Table I, while there is a wide range of hardware available
for integration, researchers gradually converge to a selection
guideline based on collaborative robots, RGB-D cameras,
and 2-finger parallel grippers or a single suction cup to build
the robot cell [21].

E. Algorithm Pipeline

The algorithm pipeline represents the control logic of
the learning system, which relies on a quality collection
of the interaction data of the robotic hardware against the
target object in the operating environment for a specific
manipulation task [18]. The main input data is collected
through passive perception such as 2D, 3D, or depth cameras
towards an image-based robot control for large-scale data
collection. A potential drawback is the limited use of robotic
hardware in manipulation tasks and learning system design.
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III. DEEPCLAW BENCHMARK DESIGN
A. Design Overview

DeepClaw is a benchmarking system for robot manipu-
lation designed to be reconfigurable, shareable, and repro-
ducible on real robots and the environment. As shown in
Fig. 1, DeepClaw consists of four components:

1) A standardized robot cell design.

2) A set of unified driver interfaces that serves as a
connection layer between the benchmarking algorithms
and the hardware, including robot arms, robot hands,
visual sensors, tactile sensors.

3) A collection of baseline algorithms for segmentation,
recognition, grasp planning, and motion planning.

4) A pipeline for task definition and functional integra-
tion,

The standard hardware design and functional pipeline
of DeepClaw aim to accelerate the benchmarking process.
Tasks defined in DeepClaw will be easily reproduced on
different robot hardware setups by changing the configuration
files while keeping the same task pipeline. The software
is mainly written in Python for ease of use. However, as
some hardware suppliers only provide APIs in C++, some
of the DeepClaw drivers use a mix of Python and C++ as
well. The key features of the design of the DeepClaw are
described in the following four aspects. More comprehensive
documentation and codes are provided at https://bionicdl-
sustech.github.io/DeepClaw/.

B. System Integration

The mechanical design of the DeepClaw station involves
aluminum extrusions commonly available from global sup-
pliers such as Misumi, with part numbers shown on the
right of Fig. 2. For the convenience of assembly, we also
introduced a few aluminum plates with through holes, which
can be easily machined from local shops. A robot mounting
plate is also included with threaded holes matching the base
mount of the robots used in this paper, including Universal
Robots and Franka Emika, which is also suitable for other
manipulators from suppliers such as AUBO. We included
detailed design files of the DeepClaw on the project Github
page so that others can make informed modifications to suit
their robot system.

We have implemented quite a few drivers for hardware
shown in Fig 2 including robot arm drivers for URS5, UR10e,
and Franka; robot hand drivers for HandE from Robotiq,
RG6 from Onrobot, gripper from Franka, and standard
suction cup; visual sensor drivers for Realsense 435/435i,
Azure Kinect, PhoXi M from Photoneo; force-torque sensor
driver for OptoForce from Onrobot. Based on these hardware
devices, we have built three robot stations, as shown in Fig.
2. Robot cell one consists of an assembled station with a
tabletop, a Franka robot arm with a suction cup, and an Re-
alsense 435i. Robot cell two consists of an assembled station
with a tabletop, a URS, an RG6 gripper, and a Realsense 435.
Robot cell three consists of a manufactured optical table, a
Realsense 435, an Azure Kinect, and a Robotiq HandE. All

the cameras are mounted about one meter above the table top
and facing downward. The hardware setup is defined in the
software part of DeepClaw through configuration files. The
same task should be easily reproduced on different hardware
setups if the configuration file is adequately defined.

We also design a 6cmx6¢cm 3D printed calibration board
mounting on the tool flange without affecting the end-
effectors, as shown in Fig. 2. A 3x3 checkerboard pattern
is printed and stick on the calibration board. The hand-
eye calibration is implemented by registering the coordinates
of the checkerboard for the robot arm and camera. Since
the transformation from the tool center point (TCP) to
the checkerboard is known, the hand-eye matrix can be
easily obtained from the singular value decomposition (SVD)
method [22]. Scripts that automatically run the hand-eye
calibration and to verify the accuracy of the calibration are
provided in the calibration module of the DeepClaw.

C. Tasks vs. Objects

In DeepClaw, a manipulation task involves three hierar-
chical concepts: task, sub-task, functionality module. A task
protocol should clearly define the main purpose of the task,
the target objects, the robot, and hardware setup, procedures
to fulfill the task and execution constraints [19]. Each task
may consist of several repetitive sub-tasks. A pipeline of
functional modules can accomplish each sub-task.

The most similarity between game and dexterous manip-
ulations enable reproducible experiments in various environ-
ment. All of the game manipulation tasks can be classi-
fied from two different perspectives: spatial reasoning and
temporal reasoning. Compared with human daily dexterous
manipulations, game manipulations have a noticeable distinc-
tion in spatial and temporal dimensions. "Jigsaw Puzzle," for
example, requires a meaningful pattern at finally by placing
certain pieces in settled spatial position and orientation using
robot cell. We can summarize that "Jigsaw Puzzle" focuses
on spatial reasoning rather than temporal reasoning sine
chronological operations to finish the puzzle are needless
during the whole placing process. "Tic-tac-toe" is the con-
trary that emphasizes moving chess chronologically rather
than its spatial position and orientation (distinguish the type
of pieces rather than each piece individual). Claw machine
is another popular game that involves picking and placing to
clear the toy tray. We hypothesize that both robot cells and
intelligent algorithms lead to performance differences when
executing game manipulation tasks.

D. Functional Pipeline

In DeepClaw, a sub-task is defined by a pipeline of mod-
ules, including segmentation, recognition, grasp planning,
and motion planning, as shown in Fig 3. The pipeline takes
color/depth images, force feedback, hardware limitation, and
environment information as input and gives actions to the
manipulation system and pushes data and results to data
monitor.

Segmentation and recognition involve analyzing informa-
tion gained from the perception system. Segmentation is the
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TABLE I: Review of shareable manipulation benchmarks with physical and simulated robots (shaded) sorted by year.

Shadow, Schunk SAH and SDH

Work name Year | Robot Gripper Camera Task
Sawyer, Franka,Kuka, | Weiss Robotics WSG-30, Grasping,
1 RoboNet [8] 2019 | WidowX, Baxter, Robotig, WidowX, Monocular RGB Pushing,
Feich, GoogleRobot Baxter, Franka, Kuka Placing
Object search,
2 RoboTurk [20] 2019 | Sawyer Sawyer Kinect2 and Webcam Tower creation,
Laundry
: ; Creative Blasterx Senz3D o
3 REPLAB [10] 2019 | WidowX WidowX SR 300 RGB-Depth Grasping
4 QT-Opt [21] 2018 | Kuka LBR IIWA Self-build two-finger gripper Monocular RGB Grasping
5 ACRYV [22] 2017 | Baxter Suction cup Kinect2, Realsense SR300 Shelf Picking
Pitcher-Mug,
= - Gripper Assessment,
6 | YCB [19] 2015 | HERBIE ﬂiﬁ:g Model T42 Q:::;fn Aabe Seting,
. PR2 ’ ! Block Pick and Place,
PR2 PR2 iy 2
Peg Insertion Learning,
Box and Blocks
7 MOC [23] 2015 Baxter Baxter Baxter Grasping
8 | RLBench [4] 2019 | Franka Franka g’b““‘“‘]“ RGH; 100 manipulation tasks
tereo camera
9 Meta-World [24] 2019 | Sawyer Sawyer Not mentioned 50 manipulation tasks
- TIAGo TIAGo Kinect2, 5 et
10 | Simitate [14] 2019 Sawyer Sawyer 12 "OptiTrack PRIME 13" Human daily activities
11 | ROBOTURK [3] | 2018 | Sawyer Sawyer Monocular RGB e e
Assembly
Block Lifting,
Block Stacking,
Bimanual Peg-in-hole,
12 | SURREAL [25] 2018 | Sawyer Sawyer Monocular RGB B il ak
Bin Picking,
Nut-and-peg assembly
- Grasp planing,
13 | OpenGRASP [26] | 2011 | ARMARIL PA-10 | ARMAR-IIL Barett hand Not mentioned Motion planning,
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Fig. 2: Design overview of the robotic hardware in DeepClaw, including the supported cameras, end-effectors, and robotic
manipulators (top), the three robot cells used in this papers (bottom), and the all the mechanical parts for a full assembly

(right).
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process that robot cell collecting environment information
and representing spatial information of the target objects by
using perception algorithms. The output of the segmentation
module can be pixel-wise masks or bounding boxes. Deep-
Claw includes basic segmentation based on contour and edge
detection in Opencv [23].

Recognition is the process of extracting features of the
target object beyond location information. In this step, the
robot cell infers the category of the target object by applying
specific methods, such as support vector machine(SVM) and
convolutional neural network [24]. Some of the end-to-end
neural networks infer the location and category of the target
object at the same time [25], [26].

Grasp planning aims to find the optimal pose for the robot
arm and end-effect to approach the target objects, which is
highly dependent on both the end-effector and the objects.
Recent years, research interests have shifted from analytic
method [27], [28] to data-driven method [2], [12], [29].
DeepClaw has implemented an end-to-end grasp planning
model based on fully convolutional AlexNet, which was
trained on 5,000 random grasps with labels.

Motion planning utilizes information above, such as grasp-
ing pose, force sensor data, constrain of the robot system,
and limitation of working space, to obtain collision-free
trajectories. Currently, waypoint-based motion planning is
used through our tasks. For UR5 and UR10e, we utilize the
movej command implemented in UR’s controller to plan and
execute a path between waypoints. For Franka, we utilize a
fourth-order motion generator in the joint space provided by
the libfranka software.

Researchers can assess different robot cells in the same
manipulation task by standardizing sub-tasks in the above
DeepClaw pipeline. Moreover, a new algorithm for each
functionality of the pipeline can be evaluated by implement-
ing the algorithm as a module and integrate it into the task
pipeline. Besides, DeepClaw pipeline provides the possibility
to analyze the variance between end-to-end neural network
models and traditional step-by-step algorithms.

E. Result Reporting

One of the key problems in benchmarking is consistent
evaluation metric and automatic data collection process. The
DeepClaw provides a monitor module to record the experi-
ment data automatically and keep a snapshot of the neces-
sary codes and configurations to be able to reproduce and
reference the experiments in the future. Evaluation metrics
can be divide into function-wise and task-wise. The former
metric only evaluates a single functionality of the pipeline.
Examples are Intersection-over-union (IoU) for segmentation
[26], recall and precision for recognition [30], force-closure
for grasp planning [31], length and clearance for motion
planning [32]. These metrics require a good knowledge of the
truth hence require extensive manual annotations. The latter
is defined to evaluate the completeness and efficiency of the
task as a whole. A universal and easy-to-get performance
metric is the time cost of each step in the task pipeline,
which is a key metric when comparing between different

algorithms and robot platforms. DeepClaw has implemented
the time cost metric, task-wise metrics such as success rate
of grasping, and some function-wise metrics, which will be
described in Section IV.

The raw data produced by the robot arm and sensors, e.g.,
robot poses, RGB images and depth images, is also recorded
throughout the pipeline depending on the tasks requirement.
The raw data and metric data are all in well defined format,
hence the same analysis script can be used.

IV. EXPERIMENT BENCHMARKS
We conduct three benchmarking tasks as examples of ap-
plications based on DeepClaw. Each task represents a specific

task of board games, assembly, and grasping, respectively,
and is repeated on all the three robot cells we have built.

A. Tic-Tac-Toe: Board Games as Adversarial Interaction

In this section, we elaborate on how we implemented
the Tic-Tac-Toe game as a benchmark test for adversarial
interaction. Tic-Tac-Toe game is a temporal reasoning related
task, which required two players moving pieces alternately.
To simplify this game as a baseline, the two players use the
same placing strategy, namely the Minimax algorithm with
depth 3, and are both executed by the robot arm. We use
green and blue cubes from Yale-CMU-Berkeley objects set
[19] representing two types of pieces. At the start of the
game, 3x3 checkerboards printed on an A4 paper is placed
in front of the robot base, and the two types of pieces are
lined on the left and right side of the chessboard as shown
in Fig 4(a). The task is to pick a type of piece and place it
on one of nine boxes on the checkerboard in turns until one
player wins or ends with a tie.

The full task of the Tic-Tac-Toe game can be divided into
two repetitive sub-tasks, as shown in Fig 4. In the picking
sub-task, we locate the cubes from contour segmentation
and select one the cubes with the same color randomly.
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' pCost Time Data Monitor
! | 1 ing Box,
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Envi | | Arm Movement
Information ' Motion ! o o ) Manipulation
. ripper Operation
' Planning 1 Gripper Op y
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Fig. 3: Functional pipeline of the DeepClaw for structured
data-driven benchmarking, consists of four steps: segmen-
tation, recognition, grasp planning and motion planning.
Sensors, which are parts of perception system, provide plen-
tiful perceptual information to algorithms among steps. Data
monitor collects valuable data during the process. Actions
are given to the manipulation system.
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In the placing sub-task, we use the Minimax algorithm to
determine the placing location. The time to complete a pick
and place sub-task t.,; is recorded as a performance metric.
To compare the performance of the robot arm, we purposely
exclude the gripper closing time from t4,;. We performed
the bin-clearing task ten times on each robot cell, and the
performance metric is averaged over ten repeated tasks.

The results show that all the repeated tasks were com-
pleted, given the simplicity of the game and the robustness
of the contour segmentation. The time costs of a pick and
place sub-task are 9.6 s, 17.9 s, and 19.5 s for Franka, URS,
and URI10e, respectively. Note in this benchmark, the joint
speed and acceleration limits are set to 0.7 m/s and 1.6 m/s>
for URS and UR10e and are set to 1 m/s and 2.5 m/s? for
Franka. With the same speed setup, URS is slightly more
efficient than UR10e. Franka cut down almost half of the
time with 1.5 times joint speed.

(a) Start (b)

—

Placing

Contour Contour
Segmentation Segmentation

l l

[ ]
=A =1
| )
| )

l I

Random Grasp Min-max
Planning Strategy

| |

Default Motion
Planning

Default Motion
Planning

L

End [ T ______________________ ‘

Fig. 4: (a) The first row shows initial configuration and the
third row shows the state of Tic-Tac-Toe task completion.
(b) The pipeline of the baseline Tic-Tac-Toe benchmark.

B. Claw Machine: End-to-End Manipulation Benchmarking

In this section, we used a claw machine scenario to
illustrate a bin-clearing task. This benchmark measures
the performance of a learned policy for predicting robust
grasps over different robot cells. At the start of the task,
a 60cmx70cm white bin stuffed by eight soft toys and an
empty 30cmx40cm blue bin are placed side by side on the
table top as shown in Fig 5. The task is to transport the toys
to the blue bin one by one until clearing the white bin. We
restrict the gripper to grasp vertically, allowing only rotations
along the z-axis of the robot base.

Each sub-task contains a pick and place cycle. The
pipeline predicts the optimal grasping pose using the fully
convolutional AlexNet trained from a dataset of 5000 random
grasps of soft toys. We replace the last three fully connected
layers by 1 x 1 convolutional layers so that the model can
process images with various resolutions. The CNN model

takes an RGB image as input and outputs relatively dense
map of success probabilities of grasps at pixel level. At each
pixel with prediction, the model give success probabilities for
I8 rotation angular bins, the angle with the highest success
probability is selected, as shown in Fig. 5(b), where the
radius of circles represents the probability, and the white
lines indicate grasp orientations. The optimal grasp center
(u,v) and the associated orientation @ is then obtained by
finding the pixel with the highest probability in the image
space. Then grasp center (u, v) is transformed to (z, y) with
reference to the robot base using depth at (u,v) from the
depth map, the intrinsic parameters of the camera, and hand-
eye matrix. The grasp depth z is fixed slightly above the
table top. For performance assessment, we report robot arm
execution time t,;, for a single pick task, and the total
picking success rate rsyqcess. Which equals to eight over the
number of total grasp attempts before clearing the bin. We
performed the bin-clearing task on three robot cells and ten
times on each robot cell. The performance metric is average
over ten repeated tasks. We also excluded the gripper closing
time from ;. to compare the efficiency of robot arms. The
closing time is 0.80 s, 2.0 s, and 0.33 s for Franka, RG6,
and HandE, respectively.

The picking success rates for Franka, URS, and UR10e are
0.80, 0.91, and 0.83, respectively. The results demonstrate the
grasp abilities variation of Franka, RG6, and HandE, among
which RG6 is most capable due to its sizeable graspable
area. The robot picking times ¢, are 8.3s,8.6sand 11.2s
respectively for Franka, URS and UR10e. In this benchmark,
the joint speed and acceleration limits are set to 0.7 m /s and
1.6 m/s? for all three robot arms. Franka and URS perform
similarly while UR10e takes the longest time as in the Tic-
Tac-Toe benchmark.

Fully
Convolutional
AlexNet

Fig. 5: (a) The first row shows initial configuration and the
third row shows the state of claw machine task completion.
(b) The pipeline of claw machine benchmark.

C. Jigsaw Puzzle: Tiling Game for Modular Benchmarking

The jigsaw puzzle benchmark is designed to evaluate
learning models for object detection and recognition for tiling
tasks. A jigsaw puzzle is a tiling game that requires the
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assembly of often oddly shaped interlocking and tessellating
pieces. The jigsaw set used in this paper contains four thin
wooden pieces with an image printed on one side and can
form a 10.2cmx10.2cm picture when they are correctly
assembled. We use a suction cup to complete the task on all
three robot cells as the jigsaw piece is only 5 mm thick and
is too challenging for grippers. At the start of the task, the
four pieces are randomly placed on the table top, as shown
in Fig. 6(a). The task is to detect and pick one jigsaw piece
at a time and place it at the required location according to
its shape and texture information, and finally assemble all
the four pieces into one whole piece. We restrict the gripper
to pick vertically, allowing only rotations along the z-axis of
the robot base.

(a) Start (b)

SsD

Refined AlexMNet
Grasp Planning

Default Motion
Planning

End

Fig. 6: (a) The first row shows initial configuration and the
third row shows the state of jigsaw task completion. (b) The
pipeline of the jigsaw benchmark.

The pipeline uses a fine-tuned Single-Shot Detection
(SSD) model [25] for segmentation and recognition. SSD
gives a bounding box of the piece without orientation and
determines which one of four pieces it belongs. Also, a fine-
tuned AlexNet is adopted to predict the grasping rotation
angles. We collected about 80 images for the training of
SSD and used data augmentation to avoid overfitting. The
training data for AlexNet was automatically generated by
rotating four template images. For performance assessment
of the overall task, we report a 2D measurement of the area
rate defined by

‘45.1.”.:::1’:1.!'(1
il Aurr.’. ual ( l )
to evaluate the task completion, where Agiundara refers
to the area of the finished jigsaw when the four fragmented
pieces are perfectly aligned together, A, .. refers to the
actual area of the minimum bounding box of the finished four
jigsaw pieces. For performance assessment of functionalities

in the pipeline, we report the IoU for segmentation, average
precision (AP) for recognition, the success rate of picking
and time cost of a pick and place sub-task as shown in Table
IL

The results compare the performance of the task on the
three robot cells. The IoU and AP are comparable on URS
and UR10e and drops on Franka, possibly because the
training data of the SSD model are collected on D435. The
result is expected to improve on Franka if we include images
from D435i as well. In this benchmark, the joint speed and
acceleration limits are set to the same for the three cells.
However, the execution time of Franka is significantly less
than URS and UR10e. A plausible explanation is that 7 DoF
robot arm is more agile and faster than 6 DoF robot arms
for more complex manipulation tasks.

TABLE II: The jigsaw benchmark results for modularized
tiling tasks.

Jigsaw Tiling
metrics URS UR10e Franka

+D435 +D435 +D435i
. 0.876 0.903 0.794
i +0.0916 | +0.0157 +0.1477
. 0.950 0.975 0.875

+0.1054 | +0.0791 +0.2125
Success rate 1+0 140 140
S 21.58 20.81 12.09
A Tone (3 +0.1854 | +1.4807 | +2.3475
1AL 0.828 0.856 0.940
ik +0.0505 | +0.0223 | +0.2461

V. CONCLUSION AND FUTURE WORK

This paper proposes DeepClaw, a minimum robot cell
design, and software to accelerate benchmarking the robotic
hardware and learning manipulation. To illustrate the use of
such hardware and software design, we have integrated three
robot cells involving three different robot arms, four cameras,
and four end-effectors. We demonstrate three benchmarking
tasks and our experiments show that tasks can be reproduced
easily with different hardware by standardizing the pipeline
of functionalities and the result reporting. However, the
performance of the task depends on the hardware.

One of the challenges with benchmarking research is to
provide long-term support for such an infrastructure so that
it can be regularly updated for improvement and feedback.
We are still in the process of adding drivers and support for
new robotic hardware and intend to provide a benchmark
for the various robotic hardware on mechanical perspective
to facilitate the selection process, as well as a build-and-
select interface for ease of use. In the meanwhile, the current
DeepClaw still lacks a simulation environment, which will
help tremendously for reinforcement learning research with
robotic manipulation. As of now, we are in the process of

2017

Authorized licensed use limited to: Cornell University Library. Downloaded on August 30,2020 at 05:26:28 UTC from IEEE Xplore. Restrictions apply.



adding support through an education-free version of PyRep,
which is the V-rep repackaged with improved python support
for learning tasks.

While our effort is to provide a standard design of
hardware and algorithm pipeline, DeepClaw currently only
features three benchmarking tasks on three different robot
cells. This is a significant limitation whenever deals with
hardware and can only be resolved by encouraging collabo-
rations within the community. Future work will be focused
on three directions: 1) adding modules of real-time robotic
control with close-loop such as visual servoing [33], force
control [34], and motion planning and 2) incorporating
existing simulation effort from the community like RL.Bench
[4] and 3) expanding the benchmarking tasks and dataset.
There are several ongoing projects based on DeepClaw in
our lab, including benchmarking new gripper designs for
manipulation and visual-tactile sensor fusion, and we shall
continuously update DeepClaw with our new results. We
hope DeepClaw will contribute to and invite collaborations
from the robotics and learning communities.
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