2019 IROS Workshop on Supernumerary Robotic Limbs November 4, 2019, The Venetian Macau Resort Hotel, Macau, China

Robotic Cane as an Ambient Super-Limb for Assistive Elderly Motion Transition

Song Chaoyang

Department of Mechanical and Energy Engineering

Southern University of Science and Technology

songcy@sustech.edu.cn

Boston Dynamics

A Social Challenge for Everyone, Especially the Elderly

"Challenge to balance or strength > Ability to stay upright"

Bionic Design & Learning Group

Falls Happen During Motion Transition

Sit-to-Stand is among the high-risk levels of motion states

Health-based risks

This includes things like balance problems, • weakness, chronic illnesses, vision problems, and medication side-effects. They are specific to an individual person.

Environmental risks

These are things like home hazards (e.g. loose ٠ throw rugs), outside hazards (e.g. icy sidewalks), or risky footwear (e.g. high heels). This category can also include improper use of a walker, cane, or other assistive device.

Triggers

These are the sudden or occasional events that cause a challenge to balance or strength. They can be things like a strong dog pulling on a leash, or even health related events like a moment of low blood sugar (hypoglycemia) in a person with diabetes.

> SUSTech Leslie Kernisan, MD MPH

Assistive Tools for Sit-to-Stand

For motion transition from Sitting on Chair, Bed & Toilet to Walking

devices." American family physician 84.4 (2011).

Medline Bed Assist bar

Safe Lift Assistance Up To 70% of Your Bodyweight*

Carex Upeasy Seat Assist Plus Adjustable Weight Ranges For Custom Support Indoor or Outdoor Use *340 Ib Weight Capacity

> Southern University of Science and Technology

AncoraSIR.com

Can we Design Intelligence for Geriatric Assistive Device?

Or how can we better assist the brain and muscle of the elderly during sit-to-stand?

	Table 1. Comparison of Assistive Devices		
	Assistive device	Pros	
	Canes		
	Standard/straight cane	Improves balance; adjustable	
	Offset cane	Appropriate for intermittent weight bearing; shotgun handle puts less pressure on palm	
20	Quadripod (four- legged) cane	Increased base of support; can bear larger amount of weight; stands freely on its own	
	Crutches		
	Axillary crutches	Able to completely redistribute weight off of lower extremities; permits 80 to 100 percent weight- bearing support; inexpensive	
	Forearm (Lofstrand) crutches	Frees hands without having to drop crutch; less cumbersome to use, particularly on stairs	
	Platform crutches	Forearm is used to bear weight rather than hand	
	Walkers		
	Standard walker	Most stable walker; folds easily	
A CONTRACTOR	Front-wheeled (two-wheeled) walker	Maintains normal gait pattern; does not need to be lifted up with each step	
Bradley, Sara M., and Cameron R. Hernandez. "Geriatric assistive devices." American family physician 84.4 (2011).	Four-wheeled walker (rollator)	Easy to propel; highly maneuverable, with small turning arc; typically has seat and basket	

sistive device	Pros	Cons	Examples of conditions indicated for use
ines			
andard/straight cane	Improves balance; adjustable	Should not be used for weight bearing; umbrella handle may cause carpal tunnel syndrome	Mild ataxia (sensory, vestibular, or visual); mild arthritis
fset cane	Appropriate for intermittent weight bearing; shotgun handle puts less pressure on palm	Commonly used incorrectly (backward)	Moderate arthritis
uadripod (four- egged) cane	Increased base of support; can bear larger amount of weight; stands freely on its own	Slightly heavier than straight cane; awkward to use correctly with all four points on ground simultaneously	Hemiparesis
utches			
illary crutches	Able to completely redistribute weight off of lower extremities; permits 80 to 100 percent weight- bearing support; inexpensive	Difficult to learn to use; requires substantial energy expenditure and strength; risk of nerve or artery compression; unable to use hands	Lower extremity fracture
rearm Lofstrand) crutches	Frees hands without having to drop crutch; less cumbersome to use, particularly on stairs	Permits only occasional weight bearing	Paraparesis
atform crutches	Forearm is used to bear weight rather than hand	Difficult to learn to use	Rheumatoid arthritis
alkers			
andard walker	Most stable walker; folds easily	Needs to be lifted up with each step; slower, less natural gait	Severe myopathy; severe neuropathy; cerebellar ataxia
ont-wheeled two-wheeled) walker	Maintains normal gait pattern; does not need to be lifted up with each step	Large turning arc; less stable than standard walker	Severe myopathy; severe neuropathy; paraparesis; parkinsonism
ur-wheeled valker (rollator)	Easy to propel; highly maneuverable, with small turning arc; typically has seat and basket	Not for weight bearing; less stable than front-wheeled walker; does not fold easily	Moderate arthritis; claudication; lung disease congestive heart failure

Geriatric Assistive Device Selection

*-Use with caution; this type of walker is appropriate if balance or cognitive impairment is mild and the patient could benefit from having a seat. †-If the patient requires weight-bearing assistance, but not constantly, a front-wheeled walker may suffice. ‡—If the patient requires weight bearing all of the time, a standard walker may be preferred because it is more stable.

SRL as a potential solution?

Towards an Ambient Super-Limb For Elderly Care

Design Concept of A Robotic Cane System

AncoraSIR.com

Robotic Cane Design

Biomechanical modeling with a linearly actuated cane

Gradually Reduced Peak Force Exerted by Human Leg

Reduced Ground Reaction Force with a Robotic Cane

٠

- Assistive Sit-to-Stand can be much more complicated than the current design
- Current progress establishes *the first steps* towards an autonomous assistive device

Source: ACC New Zealand

AncoraSIR.com

Inflatable Vest

An inflatable swimming suit sewed inside a jacket with cane hooks under the arms

Before & After Inflation

AncoraSIR.com

11/8/2019

- Design issues with active assistance for the elderly as a wearable device
- Yet to be solved with a better design

Bionic Design & Learning Group

Experiment Setup

Depth sensing for ambient motion recognition and intention detection

AncoraSIR.com

Depth Sensing for Ambient Intelligence

Towards an environment that satisfies our needs mostly without our having to think about it

- Ambient control of assistive robot for the elderly requires rich motion data
 - Consumer-grade depth sensing vs. Industrial-grade motion capture
- Future research on ambient control of super-limb robots for the elderly?

AncoraSIR.com

SRL Design for the Elderly

Scope of Design

Case with the Cane

AncoraSIR.com

11/8/2019

. . .

Design complexity increases

Super-limb for the Elderly?

On-going research on robotic cane as a super-limb for elderly assistance

Inflatable Vest **Depth Camera** Toilet • Is direct-drive a suitable actuation for Calanci elderly lower-limb assistance? Towards an ambient design of super-limb for elderly assistance for super-limb of elderly sit-to-stand? Robotic Cane Sit-to-Stand • Should we focus on the robot or the system for the elderly?

11/8/2019

SUSTech

03

STATES - PROPERTY STATES

E

Brochure

SUSTech Vide

01

ি

ACADEMIC

04

College of Science

Research · Innovation · Entrepreneurship Southern University of Science and Technology (SUSTech) is a research-oriented

public university founded in Shenzhen, China's innovation center.

11/8/2019

Facts & Figures

Visual Identity System

Milestones

Gallery

E News

💼 E-Hall

文中 🤮

SUSTech Institute of Robotics

I-MING CHEN

Distinguished Visiting Professor Director of SUSTech Institute of Robotics IEEE/ASME Fellow

ZHENG WANG

Professor Research Area: Robitcs Design and Control, Soft Robotic Systems and Control. Teleoperation.

QI HAO

Professor Research Areas Intelligent sensing and machine learning

CHENGZHI HU

Assistant Professor Research Areas Microrobotics. BioMEMS Bioinstrumentation

WEI LIU

Associate Research Professor Vision. Research Area: Computer Surgical Robotics, Medical Imaging

YIMING RONG

Chair Professor Executive Director of SUSTech Institute of Robotics ASME Fellow

Professor Research Areas Smart grid, Automatic control, Signal processing

CHENGLONG FU Associate Professor

Research Areas: dynamic walking, biped and humanoid robots robotic prosthesis.

HONGQIANG WANG

Assistant Professor Research Areas: Novel actuators, medical robots flexible robots microrobots

MINGMING LIU

Assistant Professor Research Areas: Medical and Rehabilitation Robotics

WEI ZHANG

Professor Research Area: Control and **Optimization Theory, Robotics,** Reinforcement Learning

SHUAI GUO

Visiting Professor Research Area: Mobile robot. Rehabilitation robot, Robot System and Algorithms

CHAOYANG SONG

Assistant Professor Research Areas: Mechanical Design, Bionic Robotics, Robotic Learning

U KEI CHEANG

Assistant Professor Research Areas micro-and nanorobotics

WENDE KE

Advanced Drive Principle *Human-computer* Interaction Machine Design Soft Materials Robot Dynamics Control and Automation Navigation and **Orientation** Machine Learning Perception and Sensing

ZHENZHONG JIA

Robotic Manipulation, Autonomous Intelligent Systems, Control and Learning

YANG PAN

Legged Robot, Robot Dynamics, Robot Force & **Torque Control**

Southern University of Science and Technolog

AncoraSIR.com

11/8/2019

Bionic Design & Learning Group

Song Chaoyang

Assistant Professor with Department of Mechanical & Energy Engineering Adjunct Assistant Professor with Department of Computer Science and Engineering

11/8/2019

Bionic Design & Learning Lab | Song Chaoyang | songcy@sustech.edu.cn

Bionic Design & Learning Lab @ SIR Group 仿生设计与学习实验室

Room 606 7 Innovation Park 南科创园7栋606室

Liu Ziqi

Funding Support by:

- SUSTech-MIT Joint Center for Mechanical Engineering Education and Research,
- National Students' Innovation and Entrepreneurship Training Program (201914325006)

Welcome to stay for SUSTech Night 8:20PM tonight here

Wu Xia

Chen Mingdong Liu Haiyuan

Dr. Wan Fang Prof. Fu Chenglong Prof. Harry Asada Prof. Wang Zheng

AncoraSIR.com

11/8/2019

Song Chaoyang Department of Mechanical and Energy Engineering Southern University of Science and Technology <u>songcy@sustech.edu.cn</u>

Thank you ~

Assisted Bit-to-Stand Robotic Cane Robotic C