
  

Abstract— To provide a high level dynamic stability 
objective for humanoid robots that takes into consideration 
forces due to joint coupling, we derive an analytical solution 
to the dynamic balance control of the Acrobot, a fixed-base 
underactuated inverted double pendulum. We will show that 
the proof for stability involves an analogy to the dynamic 
stabilization of a rigid pendulum through vertical vibrations 
of its base, thus providing physical and mathematical insights 
into controls and dynamic stability of underactuated, 
articulated systems like the humanoid robot. 

I. INTRODUCTION 
Humanoid robots generally take behavioral compliance 

approaches to achieve smooth, natural, and safe operations 
both for locomotion and for manipulation tasks [1-8]. Unlike 
soft robots with compliant [9-11] or hybrid bodies [12-16], 
rigid-bodied humanoid robots must be specifically controlled 
to achieve satisfactory results. One of the prerequisites for 
humanoid robots performing any task is that they do not fall 
over either due to external disturbances or in the process of 
executing desired motions. These desired motions may include 
complex gait planning or upper body manipulation tasks, and 
external disturbances may result from interaction with 
dynamic environments with unexpected environmental forces 
or traversal of difficult terrain. As such, the humanoid robot 
must autonomously plan while considering stability as well as 
have a mechanism to control for disturbances. 

A method used to ensure this stability is to depict 
representative elements of the humanoid dynamics such as the 
center of mass (CoM), the center of pressure (CoP), or the Zero 
Moment Point (ZMP)[1] using a simplified model, then map 
the desired dynamics of the simplified model back to the full 
dynamic model of the humanoid by solving an inverse 
kinematics or by using some other optimization based 
method[2], [3]. In recent years, optimization methods such as 
quadratic programming approaches[4] have been able to 
generalize algorithms based on these CoM and ZMP planning 
techniques to offer increasingly rapid and robust whole-body 
control and planning solutions[5]–[7]. However, numerical 
and computational complexity, local minima solutions, and the 
'black/gray box' nature of these methods are just some of the 
many problems that remain unsolved. As noted by[8], one of 
the keys to solving these issues is to improve understanding of 
the underlying physics and dynamics involved in stability and 
to exploit resulting mathematical structures. 

The linear inverted pendulum model (LIPM)[17], [18] and 
its many variations such as the Reaction Mass Pendulum 
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(RMP)[19] and other extensions that incorporate angular 
momentum[6], [20] have been able to provide sufficiently 
complex yet tractable representation of the physics of the 
stability of humanoid robots. As a result, this approach has had 
wide applications in humanoid robot balancing, fall detection, 
push recovery, footstep/gait planning, and walking pattern 
generation. The Acrobot is a fixed-base inverted double 
pendulum that is unactuated at the base joint[21]. A typical 
example of a chaotic system, the inverted double pendulum 
and its control methodologies have interested many robotics 
researchers specifically for application to standing postural 
control in machines and animals[8]. In terms of dynamics, it 
builds on developments of inverted pendulum models by 
allowing for explicit consideration of torque interaction 
between the two linkages of the double pendulum. The 
importance of forces arising from linkage interactions in 
humanoid robots can be seen in the biomechanics of arm-
swinging motions for dynamic walking[22], [23] and 
hip/ankle strategies in human balance[24]. The unactuated 
joint of the Acrobot further captures the underactuated nature 
of bipedal robots in which the contact between the foot and the 
ground cannot be directly controlled. 

Typically, controllers for the Acrobot have focused on 
swing-up control[25], which is not suitable for humanoid 
applications. Still, many analytical techniques have been pro- 
posed to tackle balance control of the Acrobot, usually based 
on generation of inputs that neutralize system drift vector 
fields, but these are typically valid only in in areas relatively 
close to the statically unstable inverted equilibrium posit ion. 
Linear quadratic regulator (LQR) methods[26], [27] or other 
optimal regulator functions combined with linear feedback 
[28] have provided asymptotic stabilization, but with regions 
of attraction that are unsatisfactorily small. Genetic 
algorithms[29], learning techniques[30], and optimization-
based methods[8] have achieved some successes but often 
cannot provide stability performance guarantees due to issues 
such as singularities, slow speeds hindering online 
implementation, and the lack of direct contribution to 
understanding the underlying dynamics of Acrobot balancing. 

In this work, we present an analytical solution to the global 
dynamic balance control of the Acrobot and provide a proof 
for global dynamic stability based off an analogy to the 
dynamic stabilization of the Kapitza pendulum[31], a rigid 
pendulum vertically vibrating at its base. Our method allows 
for postural control in any state of the system based on physical 
properties of the Acrobot, thus suggesting underlying 
properties that may be directly applicable to dynamical 
systems of similar articulated structures. In contrast to the 
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static or  quasi-static stability restriction of many humanoid 
robot control methods, the global dynao1ic stability property 
of our control law means that the center of mass of the Acrobot 
system can be kept permanently away from the system base 
with the system remaining stable only through dynamic 
motions of the active upper joint, thus extending the realm of 
trackable trajectories or motions and also suggesting 
possibility for faster motions that were not possible with 
statically or quasi-statically stable methods. 

II. CONTROL LAW DERIVATION 
We begin by examining the equations of motion for a fully 

actuated double pendulum 

 

Where  corresponds to the active joint angles,  to the 
passive ones, is the inertia matrix with indices according to 
the variables they relate and is symmetric and positive definite, 

 contains expressions for gravitational forces as well as 
nonlinear velocity effects including centrifugal and Coriolis 
forces, and  and  are the torques exerted by the active and 
passive joints, respectively. We note that, in the case of the 
equations of motion for the Acrobot, the passive joint does not 
exert any torque and thus we have the above but with  . 

By multiplying out the equations of motion for an Acrobot, 
i.e. Equation (1) with  , we can write 

 
 

Solving for the active joint acceleration  in (2) and the 
passive joint acceleration  in (3) yields 

 
 

The terms  and  in (4) and (5) 
can be viewed as the virtual acceleration[24] of the active joint 
generated by the acceleration of the passive one, and vice 
versa, respectively. We assume that the active joint and the 
passive joint are coupled, which means that the off-diagonal 
elements of the inertia matrix,  and , are non-zero. We 
will let (4) and (5) represent the resulting acceleration due to 
input into the system, which include the expressions on the 
right-hand-side. As such, we will let the passive joint 
acceleration be zero, i.e. , in (4), since the passive joint 
cannot actively exert torque to produce acceleration, and we 
use the substitution , where  is the active joint 
acceleration produced by the exerted torque. The actual value 
of the virtual acceleration of the active joint due to the current 
acceleration of the passive joint will be taken into 
consideration later when we derive the torque necessary to 
produce the desired active joint acceleration,  We also make 
the substitution  =  in (5) because  is the actual input 
acceleration of the active joint that will create the virtual 
acceleration of the passive joint, yield  

 
 

; ; . 
The values of , , and only depend on the joint 

angles and the joint velocities of the Acrobot,  and 

, and is completely determined once measurements of 
these variables are available. Equation (6) and (7) take a 
desired input acceleration to the active joint and produces the 
output acceleration in both the active and the passive joints. 
We note that in its current state, (6) and (7) do not consider the 
virtual accelerations due to current accelerations but only the 
virtual accelerations due to explicitly input accelerations and 
torques. The virtual accelerations will be dealt with when the 
active joint torque  required to produce the desired active 
joint acceleration  is derived. 

We can imagine that an inverse of the formulation of (6) 
and (7) is able to take desired joint accelerations as input and 
output required active joint accelerations and thus allows us to 
deal with the underactuated aspect of the Acrobot. If we have 
command accelerations to both the active and the passive 
joints that will stabilize the system, we can realize acceleration 
using only torque input to the active joint. 

We control the Acrobat’s joint angles  and  by 
controlling the tangential and radial forces on the endpoint of 
a single inverted pendulum (SIP) of variable length whose 
endpoint properties including mass , angular position , 
angular velocity , radial position , and radial velocity 

correspond to the total mass, CoM angular position , 
CoM angular velocity , CoM radial position , and 
CoM radial velocity of the Acrobot, respectively. In 
contrast to the LIPM, there is no restriction placed on the 
endpoint of the SIP, and thus the endpoint can freely move in 
any direction. The torques on the system  and the radial 
force  for the CoM SIP of variable length is described as 

 

 

 

where  is gravity,  is the moment of inertia of the SIP, 
 is the total mass of the Acrobat ,  is the angle 

from the origin of the CoM SIP,  is the angular velocity of 
the CoM SIP, and  is the desired radial direction force input 
to the system. The variables  and  represent respectively 
the torque and radial force input used to control the system.  

The location, velocity, and acceleration of the CoM of the 
Acrobat can be expressed in Cartesian coordinates by the CoM 
Jacobian and the CoM Jacobian rate of change : 

 

Fig. 1. The Acrobot model consisting of the proximal passive link 
and a distal active link and configurable inertial properties. The 
dotted line indicates the schematic for the equivalent CoM SIP. 
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and the structure of the CoM Jacobian is the partial derivative 
of the location of the CoM of the Acrobat with respect to the 
joint angles and the CoM Jacobian rate of change is the partial 
derivative of the CoM Jacobian with respect to the joint angles: 

The angular acceleration of the CoM SIP can then be 
derived by inserting the expressions for the variables involved 
in , , and into the expression for the angular 
velocity and angular acceleration of the of the CoM SIP, which 
is simply the second derivative of the equation for the angular 
position , yielding 

 

 

The expressions for the terms in and are 
completely determined after the state measurements  
and  of the Acrobat are available, and thus we can express 
the angular acceleration of the CoM SIP in terms of the 
Acrobat joint angular accelerations as 

 

where  and  contain all the terms involving  and  
respectively after substitution of the variables in (8), (9), and 
(10) into (14) with their respective multipliers factored out, 
and  contains all the remaining terms in the result of the 
substitution. Hence, we can describe the angular acceleration 
of the CoM SIP using angular accelerations of the Acrobat. 

We will let the variable  be our desired CoM angular 
acceleration,  .The desired CoM angular 
acceleration is described by the effects in (8) by . We 
negate the signs of the gravitational and Coriolis effects (since 
we are trying to overcome them) in (7) while keeping the 
positive sign convention a command torque input  to yield 

 

which can then be substituted into (16).  
There are no singularities in (16) for nonzero Acrobat 

length and mass, as we can imagine that at any position angular 
acceleration of either the active joint or the passive joint will 
affect an angular acceleration of the CoM SIP. However, the 
same cannot be said about a similar derivation for the radial 
direction acceleration of the endpoint of the CoM SIP in terms 
of the Acrobat's joint angular accelerations, as an angular 
acceleration of either joint of the Acrobat when the two 
linkages are aligned and at the straight-up-and-down position 
is not able to command any radial-direction acceleration of the 
CoM SIP. As such, we utilize a derivation like an attachment 
of a virtual structure used by Pratt et al. for virtual model 
control[33]. Avoiding the singularity is accomplished by 
attaching horizontal and vertical forces  and  that act on 
the CoM of the Acrobat at any point in time. These are simply 
additional input forces on the equations of motion for the 
Acrobat, and considering their effects, (6) and (7) become 

 

 

Where 

 

 

 

 

 

 

Then, we again negate the expressions for the gravitational 
force and the centripetal force in the radial direction from (9) 
while keeping the sign of  the same, and project these radial 
forces onto the x- and y-axes to obtain the desired radial input 
forces. We can then rearrange to isolate our desired radial 
direction input force  to yield 

 

 

 

Now, to put everything together, we first substitute the 
expression for  and  in (21) and (22) into (17) and get 

 

 

 

 

Then substitute the expression for  and in (23) and (24) 
into (16) with the desired CoM angular acceleration described 
in (18) and isolate to obtain 

 

 

The expression in the denominator of (25) is always 
nonzero, and thus the expression is safe from singularities. 
Equation (25) gives us a command of Acrobot active joint 
acceleration given a desired input torque  and input radial 
force  to the equivalent CoM SIP. Then the torque input to 

Fig. 2. Angular position of equivalent CoM SIP superposition of 
two sinusoids with different amplitude/ frequencies. 
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the Acrobot  is calculated from the desired angular 
acceleration  by substituting the virtual acceleration of the 
passive joint in (5) into the motion equation for the active joint 
in (2) 

 

The control law for  and  to stabilize the CoM SIP 
derived from the Acrobot is 

 

 
where  and  are the proportional gains for the angular 
and radial positions and  and  are the derivative gains 
for the angular and radial velocities.  

Using the above control law with gains ,
, ,  on a simulated Acrobot with initial 

joint angles  ,  and zero initial joint velocities, 
the active joint of the Acrobot spins like the blades of a fan, 
driving the passive joint to oscillate rotationally, which in turn 
drives an overall movement of the entire Acrobot. The overall 
effect can be summarized by plotting the angular position of 
the motion of the equivalent CoM SIP, as shown in Fig. 2. 
Note that the figure resembles the combination of two 
waveforms, one with smaller amplitude and larger frequency 
representing the rapid effects of the spinning active joint, and 
the other a large amplitude, lower frequency waveform 
representing the overall motion of the system that seems to be 
diminishing as time increases. This insight will aid the next 
section in proving the global dynamic stability of the Acrobot 
controlled by (27) and (28). 

III. PROOF OF STABILITY BY THE GENERALIZED KAPITZA 
METHOD 

The Kapitza pendulum, named after Russian Nobel 
laureate physicist Pyotr Kapitza, refers to an inverted 
pendulum that is stabilized in the inverted position by vertical 
vibrations at its pivot point. Intuitively, the stability occurs due 
to a shorter moment arm during the downward motion of the 
vibration relative to the upward motion of the vibration, thus 
causing an overall moment moving the pendulum to the 
inverted position. Mathematically, Kapitza pendulum stability 
can be proved in two ways. The first utilizes Floquet theory on 
the Mathieu equation, thus demonstrating the disturbance 
rejection abilities of the Kapitza pendulum and allowing for 
the stability regions of the pendulum to be illustrated on a 
graph of frequency of vibration versus amplitude of 
vibration[34]. The second method is by Kapitza and involves 
deriving the effective potential towards which the system 
converges by decomposing the effects of the vertical 
vibrations into 'slow' and 'fast' components and then time-
averaging over the rapid oscillations[31]. We use a 
generalization of the second method that generalizes the 
inverted pendulum into an arbitrary particle acted on by an 
arbitrary periodic force[35].  

We begin by recalling that a periodic force  can be 
defined in terms of a Fourier series as 

 

the Fourier coefficients  and  are given by 

 

 

We then rewrite the motion of the endpoint of our Acrobat 
Equivalent CoM SIP in terms of the motion for an arbitrary 
particle of mass m that is governed by 

 

where  is the force due to a time-independent 
potential field , and  is periodic. We observe in 

 a fast  and a slow component , yielding 
 

We assume that the mean value of the fast component , 
over its period  is zero, and that the slow component  is 
more or less constant over that time. We take the first order 
Taylor's expansion of the motion over a small time-step 
equivalent to the fast component to yield 

 

 

Substituting this into (32) yields 

 

We let the fast component of the motion be a result of the 
periodic force to obtain 

 
and then integrate while regarding  as a constant to yield 

 

We subtract the value of the fast component defined in (37) 
from the Taylor expansion expression in (36) to yield the slow 
component of the motion 

 

Time-averaging the Taylor expansion in (36) over the time 
period  and using the facts that ,  and the 
slow components assumed constant over the interval  yields 

 

where the bar-notation designates an average value over the 
time period . We can differentiate (29) to obtain 

 

and since the value of  is known from (38), we can obtain 

 

 

 

Then, for  we have 
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and for  the terms are zero. This gives us 

 

which can be substituted into (40) to yield 

 

which only contains two terms that are both differentials, 
and thus can be written as 

 

where  is the effective potential. Like any other potential 
function, the system converges to the minimum of the effective 
potential function, and thus the system is globally stable if that 
minimum is stable. Thus the stability of the system is 
determined by the Fourier coefficients of the forcing function. 

To apply this to our Acrobot control method, we determine 
the torque about the base link instead of the endpoint of the 
passive joint for the input d efined in (26) and divide by the 
instantaneous length of the CoM, , to yield an equivalent 
tangential and radial force at the CoM. Then, we can apply the 
generalized Kapitza method proof method in both directions 
to yield tangential and radial effective potential functions. 
Since the torque input function itself is a differential equation 
without an analytical solution, we cannot readily solve for the 
values of the gains given a desired point of convergence. 
However, we can still calculate an effective potential using the 
discrete Fourier series of the results of numerical solution to 
the differential equation and obtain data for a set of initial 
Acrobot joint conditions, gains, and resulting convergence. 
The Acrobot controller design problem is then reduced to 
determining the range of initial Acrobot joint conditions we 
want to design for and selecting the set of gains that will 
provide the desired convergence behavior both in the 
tangential and the radial direction for the desired range. 
Furthermore, we also observed during the tuning that the 
effects of the individual gains also correspond to the variables 
they modify. For example, tuning  corresponds to forcing 
the Acrobot to 'extend' so as to elongate the distance between 
its CoM and the base, and thus if  is set to zero the final 
statically unstable equilibrium position of the Acrobot may 
correspond to one in which the Acrobot is 'hunched over’. 

IV. SIMULATION RESULTS 
We simulated the Acrobot with inertial parameters 
, , ,  with various initial angular 

positions as well as with an initially stable position subject to 
disturbances. Using gains of , , 

 and the desired angular position and velocity set 
to the stable inverted position, the control law was able to bring 
the system to an inverted equilibrium position from any initial 
angular position or velocity. However, with initial positions 
that are extremely far away from the initial position such as 
with ,  or with both linkages parallel to the 
ground, we observe motion where the active joint spins like a 
fan to cause the entire system to rotate towards the equilibrium 
position and then transitions into a more reasonable trajectory 
of oscillations to the inverted equilibrium when it is near the 
inverted position before settling stably. Fortunately, the 
conditions where this 'helicopter' action takes place is way 
outside any humanoid robot and thus can be easily avoided. 

Fig.3 shows results for an initial condition of , 
, , a reasonable state for humanoid 

representation far away from the inverted equilibrium position. 
The control law initially exerts a large torque through a twist 
at the waist to force the system away from the instability-
causing effects of gravity into a dynamically stable state, as 
demonstrated by the initial crossover between the  and  
from negative to positive and vice versa, respectively. Then, 
the torque input  oscillates with diminishing amplitude as it 
brings the system from non-stationary dynamic equilibrium to 
the statically unstable equilibrium at the inverted position.  

Fig. 4 shows results for the system initially in the static 
inverted position of  subject to a 5N force at the 
endpoint of the distal linkage for 3 seconds, as indicated by the 
shaded area. We can see that the torque input is also oscillatory 
in nature with decreasing amplitude with respect to the effects 
of the disturbance. If the disturbance were to persist, the 
system would transition from the dynamic equilibrium with 
the disturbance to a statically unstable equilibrium position 
that balances out the disturbance. As the disturbance was 
removed at time t = 3, the torque input went from oscillatory 
inputs with respect to the disturbance to oscillatory inputs that 
regulate the effects of gravity as in the previous example, 
eventually settling into the original inverted position.  

These results concur with the proof from the previous 
section for stability based on viewing the input effects as a 
sinusoid. This provides strong rationale for further 

Fig. 3. Example 1. Initially unstable position of the Acrobot 
system dynamically stabilized using oscillatory inputs. 

Fig. 4. Example 2. The system also attempts to dynamically 
stabilize with regards to the three seconds of disturbance. 
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investigation of the model and control method for humanoid 
periodic locomotion applications such as dynamic running 
pattern generation. Furthermore, the proof for stability and the 
simulation results also provide an analytical basis for the 
oscillatory input found by stochastic programming with 
respect to the Larangian in[8] for control of a spatial inverted 
double pendulum, and possible further theoretical extensions 
and generalizations through steering by sinusoids for 
nonholonomic systems in[36]. 

V. CONCLUSION 
We considered the problem of balance control of the 

Acrobot as a model for humanoid balancing for its ability to 
capture dynamical features such as nonlinear velocity effects 
lost in simpler single inverted pendulum models. The 
proceeding derivation of the control law and the proof for 
stability not only allows for global stability, but also provides 
a significant amount of physical insight into the nature of the 
dynamic balancing of underactuated articulated bodies like the 
humanoid robot, an aspect that is missing in many purely 
optimization-based or learning methods. By incorporating the 
dynamics of inertial coupling between the joints, we could 
include an expression for the virtual acceleration of the passive 
joint into the dynamics of the active joint so it can take 
responsibility for the under actuation as it moves. Then, by 
noticing the differences in speeds induced by the actuation, we 
proved the stability of the Acrobot system by decomposing the 
input force into sinusoids of two time-scales of movement and 
integrating over the period to examine the overall motion.  

Since the requirement for arriving at an effective potential 
function indicative of successful global stabilization is only a 
periodic input, we wish to explore modifications to the 
trajectories as the system stabilizes through alternative control 
law derivations to minimize other performance metrics such as 
overall energy input through means such as passivity-based 
controls. Naturally, we intend to explore how this model can 
contribute to current state-of-the-art control methodologies for 
humanoid robot whole-body motion planning and control, 
with emphasis placed on how the ideas on dynamic stability 
gained from this work allows for a wider range of motions and 
improved stability as well as improvements on computational 
efficiency possibly by exploiting harmonic structures in 
solutions. Finally, we also intend for the control ideas 
introduced to be extended into a three-dimensional version of 
the Acrobot such as the spatial inverted double pendulum and 
toward more complex versions with more joints, and 
eventually to a full dynamics model of a humanoid robot.  
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