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Abstract In this paper, the bifurcation behavior of the line-symmetric Bricard linkages without 
offset is studied. When there are not offsets, the geometry conditions of the original and revised 
line-symmetric Bricard linkages become identical to each other. In each linkage, there are two 
distinct and independent linkage forms. The kinematic paths of each linkage forms in the original 
and revised linkages are obtained. By inspecting the kinematic paths, certain configurations of 
these linkage forms are found to be identical to each other, which make it possible for kinematic 
singularities. As a result, a full map of bifurcation is established for the line-symmetric Bricard 
linkages without offset, which makes the linkage a good source of design for reconfigurable 
mechanisms. 
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Notations 

iz : The coordinate axis along the revolute axis of joints i ; 

ix : The coordinate axis along the common normal between joint axes from joint i  to joint 1+i ; 

( )1+iia : The length of link ( )1+ii , which is the common normal distance from iz  to 1+iz  positively 
about ix , and defined in the range of ( )∞+∞− , ; 

( )1+iiα : The twist of link ( )1+ii , which is the rotation angle from iz  to 1+iz  positively about ix , 
and defined in the range of [ )ππ ,− ; 

iR : The offset of joint i , which is the common normal distance from ix  to 1+ix  positively along 

iz , and defined in the range of ( )∞+∞− , ; 

iθ : The revolute variable of joint i , which is the rotation angle from ix  to 1+ix  positively about 

iz , and defined in the range of [ )ππ ,− ; 
Aterm , Bterm  and Cterm : The symbols of simplified mathematical relationships; 
α/a , β/b , γ/c , δ/d : the length and twist of the link, e.g.  α/a  is a link with length a  and 

twist α ; 
and Form I, II:  The different linkage closures. 
X and X′ : X  is for the parameters in the original general line-symmetric Bricard linkage and X′  

is for the corresponding parameters in the revised linkage. 

 



1. INTRODUCTION 

The overconstrained linkage is a kind of mechanism that preserves mobility during a full-circle 
movement while does not comply with the Grübler-Kutzbach’s mobility criterion [1]. The Bricard 
linkages are an important linkage family in the overconstrained linkages with revolute joints only. 
The line-symmetric Bricard linkage is one of the Bricard linkages [2, 3] which exhibit line-
symmetry in geometry conditions and has only one degree-of-freedom in 3D space. There are two 
types of the general line-symmetric Bricard linkages reported in literatures. The original linkage 
was proposed by Bricard [3] as an extension of his work in finding deformable mechanisms with 
solid angles and dihedrals. This original linkage is line-symmetric in geometry conditions, 
kinematic variables and spatial configurations [4]. The revised linkage was reported by Mavroidis 
and Roth [5] when they were searching for new and revised overconstrained linkages using 
numerical method. This revised linkage differs from the original one with negatively equalled 
offsets on the opposite joints. The D-H parameters [6] in Figure 1 are adopted in this paper. 
Therefore, the geometry conditions of the original and revised general line-symmetric Bricard 
linkage are 

( ) ( ) ( )( ) ( )( )434311 ++++++ ′==′= iiiiiiii aaaa , 

( ) ( ) ( )( ) ( )( )434311 ++++++ ′==′= iiiiiiii αααα ,  

( ) ( )33 ++ ′−==′= iiii RRRR  ( )3,2,1=i . 

(1) 

 
Figure 1 The setup of the Denavit and Hartenberg’s parameters. 

 
Note that to ensure this is a closed-loop 6R mechanism, the subscripts must be the remainder of 6 
in positive numbers. The positively equalled offsets on the opposite joints ( )3+= ii RR  correspond 
to the original linkage [3], while the negatively equalled offsets on the opposite joints ( )3+′−=′ ii RR  
correspond to the revised linkage [5]. It is discussed in [7] that the revised linkage is equivalent to 
the original linkage with different setups on the joints axis directions. When there’s no offset in Eq. 
(1), the geometry conditions of these two linkages become identical to each other, which is a very 
special case of the general line-symmetric Bricard linkage.  
 
The focus of this paper is to study the relationship between the original and revised line-symmetric 
Bricard linkage without offset. Fundamental research into such special cases explores potential 
designs of reconfiguration mechanisms using kinematic singularities. The layout of this paper is as 
follows. Section 2 introduces the kinematics of the original and revised line-symmetric Bricard 
linkage without offsets. Section 3 investigates the bifurcation behaviour of the line-symmetric 
Bricard linkage without offsets. Conclusion and discussions are made in section 4, which 
concludes this paper. 
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2. THE LINE-SYMMETRIC BRICARD LINKAGE WITHOUT OFFSETS 

The explicit closure equations of the original and revised general line-symmetric Bricard linkage 
are already derived in [7]. We can directly substitute the condition 0=iR  to obtain the explicit 
closure equations of the original line-symmetric Bricard linkage without offsets. For original Form 
I linkage, we have 
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and for original Form II linkage, we have 
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The unknown symbols are defined as follows. 
( ) ( )[ ]
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and 
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Using the geometry conditions as below, we can plot the kinematic paths and spatial 
configurations of these two original linkage forms in Figures 2~5. 

72.0,55.0,40.0 613456234512 ====== aaaaaa ; (6) 
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180/120,180/70,180/20 613456234512 πααπααπαα ====== ; 
0654321 ====== RRRRRR . 

 
Figure 2 The kinematic paths of the Form I original line-symmetric Bricard linkage with no 

offsets. 
 

 
Figure 3 The kinematic paths of the Form II original line-symmetric Bricard linkage with no 

offsets. 
 

 
Figure 4 The spatial configuration of the Form I original line-symmetric Bricard linkage with no 

offsets when 3/I
1 πθ = . 

 

 
Figure 5 The spatial configuration of the Form II original line-symmetric Bricard linkage with no 

offsets when 3/II
1 πθ = . 
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The revised linkage is equivalent to the original linkage with different setups on the joint axis 
directions [7]. For example, we can obtain two revised linkage forms with the same spatial 
configurations in Figures 4 and 5 by changing 180/1206134 παα ==  in Eq. (6) into 

( ) 180/60180/1801206134 ππαα −=−=′=′ . As a result, the relationship between revolute variables 
in the original and revised linkage forms become 

11 θθ ′= , 22 θθ ′= , 33 θθ ′= , 44 θθ ′−= , 55 θθ ′−= , 66 θθ ′−= . (7) 
 
 
 
3. BIFURCATION ANALYSIS OF THE LINE-SYMMETRIC BRICARD LINKAGE 

WITHOUT OFFSETS 

In the foregoing section, the differentiation between the original and revised linkage forms is based 
on the same spatial configurations between these two linkages under different geometry conditions. 
When all offsets are set to zeros in the general line-symmetric Bricard linkage, the simplified 
geometry conditions for the original and revised linkage are the same as follows. 

( ) ( )( )431 +++ = iiii aa , ( ) ( )( )431 +++ = iiii αα , )6...,,2,1(0 == iRi . (8) 

It would be interesting to study the relationship between the different configurations of the original 
and revised linkages based on the same geometry conditions, i.e. Eq. (8). In this case, the original 
and revised linkages share the same geometry conditions, but present with different spatial 
configurations in the 3D space. Using the geometry conditions in Eq. (6), we can also plot the 
kinematic paths and spatial configurations about the two forms of the revised line-symmetric 
Bricard linkage in Figures 5~8.  

 

 
 

Figure 6 The kinematic paths of the revised Form I′  line-symmetric Bricard linkage with no 
offsets. 
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Figure 7 The kinematic paths of the revised Form II ′  line-symmetric Bricard linkage with no 
offsets. 

 
 
 

 
 
Figure 8 The spatial configuration of the revised Form I′  line-symmetric Bricard linkage with no 

offsets when 3/I
1 πθ =′ . 
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Figure 9 The spatial configuration of the revised Form II ′  line-symmetric Bricard linkage with no 

offsets when 3/II
1 πθ =′ . 

 
 
By inspecting the kinematic paths of the two original linkage forms in Figures 2 and 3, and that of 
the two revised linkage forms in Figures 6 and 7, we found certain configurations where the 
original and revised linkage forms become identical to each other. Take the relationship between 

1θ  and 5θ  for example, we can plot the map of transformation in Figure 10, where the kinematic 
paths of each linkage form is illustrated with the same line types in Figures 2, 3, 6 and 7.  

 

 
Figure 10 The full map of transformation of the line-symmetric Bricard linkage without offsets. 

 
 
As shown in Figure 10, when the original Form I linkage in black solid line moves to 01 =θ  at 

IB , it can bifurcate into the kinematic paths of revised Form I′  linkage in black dash line. Then, 
when the revised Form I′  linkage in black dash line moves to πθ =1  at IIB , it can bifurcate into 
the kinematic paths of original Form II linkage in grey solid lines. When the original Form II 
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linkage in grey solid lines moves to 01 =θ  at IIIB , it can bifurcate into the kinematic paths of 
revised Form II ′  linkage in grey dash lines. Finally, when the revised Form II ′  linkage in grey 
dash lines moves to πθ −=1  at IVB , it can bifurcate back to the kinematic paths of original Form 
I linkage in black solid lines. As a result, a full map of bifurcation among these four linkage forms 
with the identical geometry conditions is obtained. As illustrated in Figure 10, one can 
conveniently choose other paths for different bifurcation behaviours among these four linkage 
forms. It should be noticed that here the geometry conditions of the revised line-symmetric Bricard 
linkage without offsets in Eq. (6) is equivalent to the original line-symmetric Bricard linkage 
without offsets under the following geometry conditions, where the twist on links 34 and 61 is 
changed from 180/120π  to ( ) 180/60180/180120 ππ −=− . 

72.0,55.0,40.0 613456234512 ====== aaaaaa ; 
180/60,180/70,180/20 613456234512 πααπααπαα −====== ; 

)6...,,2,1(0 == iRi . 
(9) 

Therefore, the full map of transformation in Figure 10 could be alternatively viewed as the 
transformation among the two forms of original line-symmetric Bricard linkage with Eq. (6) in 
black lines, and two forms of original line-symmetric Bricard linkage with Eq. (9) in grey lines. 
 
The above result is verified using the Singular Value Decomposition (SVD) method [8, 9]. The 
SVD method is to solve the linkage’s Jacobian matrix with a predictor and corrector step. Six 
singular values of the linkage’s Jacobian matrix are monitored. When the sixth singular value 
remains zero, it indicates that the linkage has only one degree of freedom. When the fifth singular 
value falls to zero at some points, it indicates that the instantaneous mobility is increased in at 
these points. These points are the bifurcation points where the linkage might bifurcate into other 
kinematic paths. The SVD results of the original and revised line-symmetric Bricard linkages 
without offsets are plotted in Figures 11 and 12. Bifurcations of the original and revised linkage 
forms occur at ππθ +−= ,0,1 , which corresponds to the bifurcation behaviours shown in Figure 
10. 
 

  
(a) (b) 

Figure 11 The SVD result of the original line-symmetric Bricard linkage without offsets: (a) the 
Form I linkage; (b) the Form II linkage. 
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(a) (b) 

Figure 12 The SVD result of the revised line-symmetric Bricard linkage without offsets: (a) the 
Form I′  linkage; (b) the Form II ′  linkage. 

 
 
 
4. CONCLUSION AND DISCUSSIONS 

In this paper, the kinematics is devoted to the bifurcation analysis of the line-symmetric Bricard 
linkage without offsets. It is already discussed that there are two distinct and independent linkage 
forms in the original and revised general line-symmetric Bricard linkages, respectively. And the 
original and revised linkages are equivalent to each other with different setups on the joint axes, 
which result in different representations of the offsets [7]. However, when there are no offsets, the 
geometry conditions of the original and revised linkages become identical to each other. This 
change in the geometry conditions makes it possible to connect the kinematic paths of these two 
linkages through kinematic singularities. As a result, certain points on the kinematic paths are 
identified where the spatial configurations of the original and revised linkages become identical. 
At these points, bifurcations may occur and therefore a full map of transformation among different 
forms of the line-symmetric Bricard linkage without offsets is established.  
 
Such bifurcation behavior makes the line-symmetric Bricard linkage without offsets a good source 
of design for reconfigurable mechanisms. For example, it could be used to explain to multiple 
linkage forms and bifurcation behaviors of the double-subtractive-Goldberg 6R linkage [10].As 
shown in Figure 13, the geometry conditions of the double-subtractive Goldberg 6R linkage is as 
follows. We could introduce a new link-pair 56’-6’1 to form a Bennett linkage with link-pair 56-
61 and then remove link-pair 56-61 to obtain a line-symmetric Bricard linkage without offset [11]. 
Therefore, the double-subtractive-Goldberg 6R linkage and the line-symmetric Bricard linkage 
without offsets should share the same bifurcation behaviors. 

caaa −== 4512 , daa == 6123 , baa == 5634 , 
γααα −== 4512 , δαα == 6123 , βαα == 5634 , 

dcba
δγβα sinsinsinsin

=== ,  

)6...,,2,1(0 == iRi . 

(10) 

9 
 



 

 
Figure 13 Isomerization on the double-subtractive-Goldberg 6R linkage. 
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